

The IMA is a compact, durable, high force rod-style actuator. The IMA integrates a servo motor with a proven mechanical design to provide efficient high force in a compact lightweight design envelope. Our patent-pending design allows for easy re-lubrication without disassembly for extremely long service life.

Features:

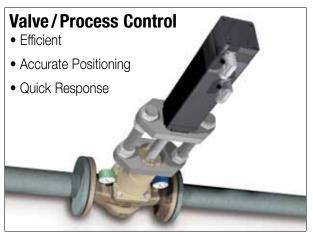
- Compact, lightweight design
- Long life
- High force
- High positional accuracy
- High efficiency
- Proven performance
- Flexibility
- Compatibility
- Low inertia

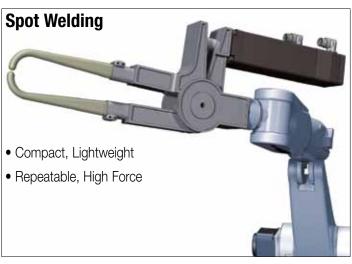
Eliminates:

- Couplers
- Adapters
- Belts
- Gears
- Unneeded assembly labor
- Forced air or water cooling
- Hydraulic systems
- Pneumatic systems
- Need for multiple vendors

PATENT PENDING SCREW-LUBRICATION SYSTEM

Look For:


Endurance Technology features are designed for maximum durability to provide extended service life. This endurance technology symbol indicates our durability design features.


CONTENTS

What is the IMA?2	IMA Specs & Performance 6-8	Selection Guidelines 14
IMA Applications3	IMA Dimensions9-12	Ordering 15
IMA Features 4	Application Data Worksheet 13	

IMA Applications

Other Applications:

- Animation
- Assembly
- Automated assembly
- Automatic tool changers
- Automotive
- Clamping
- Converting
- Conveyors
- Cycle testing
- Fillers
- Formers

- Hydraulic replacement
- Laser positioning
- Machine tools
- Material handling systems
- Medical equipment
- Molding
- Motion simulators
- Open/close doors
- Packaging equipment
- Parts clamping
- Patient lifts

- Pick & place
- Pneumatic replacement
- Precision grinders
- Product test simulations
- Riveting / fastening / joining
- Robot manipulator arms
- Sawmill equipment
- Semiconductor
- Stage motion control

- Stamping
- Table positioning
- Tension control
- Test stands
- Tube bending
- Volumetric pumps
- Water jet control
- Wave generation
- Web guidance
- Welding
- Wire winding

IMA INTEGRATED MOTOR ACTUATOR

○ENDURANCE TECHNOLOGY

Endurance Technology features are designed for maximum durability to provide extended service life.

• MULTIPLE SCREW TECHNOLOGIES YOU CAN CHOOSE:

- •Ball nuts offer positioning accuracy and repeatability
- •Roller nuts (coming soon) provide the highest thrust and life ratings available

OINTERNAL BUMPERSO

•Bumpers protect the screw

and nut assembly from damage at end of stroke

REPLACEABLE BEARING CARTRIDGE

 Doubles as a locating pilot for positioning actuator

ROD WIPER

 Prevents contaminants from entering the actuator for extended life

• GREASE PORT ←

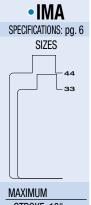
- Patent pending screw relubrication system provides extended screw service life
- Convenient lubrication without disassembly

INTEGRAL MOUNTING

 Four threaded holes on front face are available for direct mounting or addition of customized options

OTHREADED ROD END ←

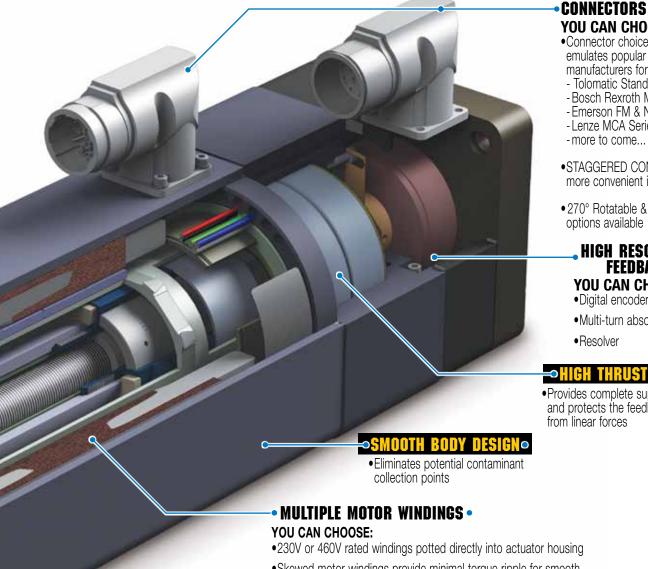
- •Zinc plated alloy steel construction for corrosion resistance
- Provides a common interface to multiple rod end options


• MELONITE® TREATED • THRUST TUBE

- •Steel thrust tube supports extremely high force capabilities
- Melonite® treatment provides excellent corrosion resistance, surface hardness and is very resistant to adherence of weld slag, water and other potential contaminants

Melonite® is a registered trademark of Burlington Engineering, Inc. www.burlingtoneng.com

LIGHTWEIGHT


 Black anodized extrusion design is optimized for rigidity and strength

MAXIMUM STROKE: 18" THRUST: 2,000 lbf SPEED: 23 in/sec

COMPLETE INFORMATION: www.tolomatic.com

CONNECTORS • YOU CAN CHOOSE FROM:

- Connector choice and wiring emulates popular motor manufacturers for compatibility:
- Tolomatic Standard
- -Bosch Rexroth MSK Series
- Emerson FM & NT Series
- Lenze MCA Series
- STAGGERED CONNECTORS for more convenient installation
- 270° Rotatable & Box mount options available

HIGH RESOLUTION FEEDBACK YOU CAN CHOOSE:

- Digital encoder
- Multi-turn absolute encoder

⇒HIGH THRUST BEARING•

 Provides complete support of screw and protects the feedback device

- •Skewed motor windings provide minimal torque ripple for smooth
- •Integral thermal switch for over temperature protection

. HIGH POSITIONAL . ACCURACY

•Accuracy of ±0.00984" [±0.25 mm]

Modifications:

 Contact Tolomatic for Stainless Steel, Food Grade or Mil-Spec versions of the IMA

OPTIONS

MOUNTING

2 sides & bottom (no photo)

• Front Flange • Trunnion, Rear or Front

ROD END

CABLES

• External Threads

• Signal Cable (6m)

• Power Cable (6m)

Spherical Eye

Alignment Coupler

BRAKE

• 24V Spring held electronically released

AR0

Anti-Rotate

IP67 • For protection against water and dust ingress

Performance & Mechanical Specifications:

SERIES	SERIES IMA33 IM										
0175	in	3	.3	4.	.4						
SIZE	mm	83	3.0	110	0.0						
0=00/=	in		6.0 to	18.0							
STROKE	mm		152.4 t	o 451.2							
NUT/SCREW		BN05	BN05	BN10							
0005141.540	in	0.197	0.394	0.197	0.394						
SCREW LEAD	mm	5.0	10.0	5.0	10.0						
DYNAMIC	lbf	1709	1214	3395	3372						
LOAD RATING	N	7602	5400	15100	15000						
(1 mil revs)	in/ft	. 002	0.0		.0000						
LEAD ACCURACY	mm/300		0.0								
ACCONACT		0.004	0.004	0.005	0.005						
BACKLASH	in	0.004	0.004	0.005	0.003						
2017	mm lbf	850	425	1650	825						
CONT. Thrust	N										
	lbf	3781 1000	1891 850	7340	3670 1650						
PEAK THRUST	N	4448	3781	8896	7340						
	in/sec	11.5	23	11.5	23						
MAX. Velocity	mm/sec	279	559	279	559						
	°F	213	50 to		009						
TEMP RANGE	°C			0 50							
IP RATING		andard IF		onal IP67							
II HAING	lb	14		28							
BASE WEIGHT	kg	6			3.0						
WEIGHT PER	lb/in	0.6		1.10							
UNIT OF STROKE	kg/mm	0.2		0.50							
	oz-in ²	0.702	0.702	5.16	5.16						
BASE INERTIA	gm-cm ²	128.4	128.4	943.8	943.8						
	oz-in ²	0.054	0.054	0.344	0.344						
INERTIA/IN	gm-cm ²	9.9	9.9	62.9	62.9						
BREAKAWAY	in-lb	2.4	2.3	4.3	3.6						
TORQUE	N-m	0.271	0.260	0.486	0.407						
		J, .	0.200	5.700							
BACK DRIVE	lbf	90	40	170	80						

^{*}In vertical applications an unpowered IMA will require a brake to maintain position if the load on the actuator exceeds this value

MAKE THE RIGHT CHOICE!

IMA 6

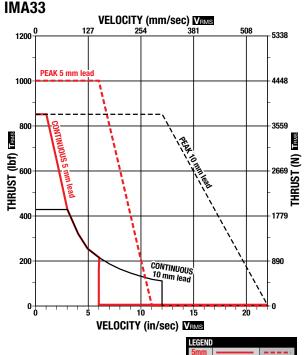
Tolomatic's sizing software is a great tool to help choose the right IMA. OR Contact Tolomatic for assistance in choosing the correct IMA actuator and options required for your application.

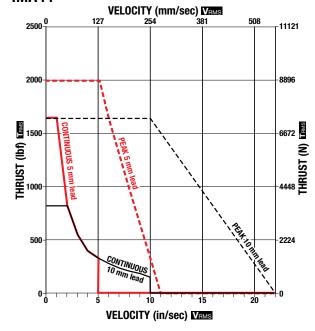
Motor Specifications:

	SERIES	IMA	A33	IMA44					
TORQUE	in-lb/A Peak	5.5	10.7	5.4	10.6				
CONSTANT (Kt)	N-m/A Peak	0.62	1.21	0.61	1.20				
VOLTAGE CONSTANT (K _e)	V/Krpm Peak	79.8	154	78.1	153.1				
CONTINUOUS	in-lb	35	34	67	67				
STALL TORQUE	N-m	4.0	3.8	7.6	7.6				
CONTINUOUS STALL CURRENT	Arms	4.5	2.25	8.8	4.5				
DEAK TODOUE	in-lb	70	68	13	34				
PEAK TORQUE	N-m	7.9	7.7	15	5.2				
PEAK CURRENT	Arms	9	4.5	17.6	9.0				
RESISTANCE	Ohms	2.07	8.3	0.58	2.32				
INDUCTANCE	mH	3.8	15	2.75	11.5				
NO. OF POLES			{	3					
BUS VOLTAGE	Vrms	230	460	230	460				
SPEED @ Rated v	RPM		35	00					

RoHs Compliant Components, UL (Approval Pending

Brake Specifications:


	SERIES	IMA33	IMA44
ROTOR	oz-in²	0.112	0.656
INERTIA	gm-cm ²	20.5	120.0
CURRENT	Amp	0.516	0.67
HOLDING	in-lb	35	80
TORQUE	N-m	4.0	9.0
ENGAGE TIME	mSec	20	50
DISENGAGE TIME	mSec	70	40
VOLTAGE	Vdc	24	24


FREE - Windows® compatible software, download at www.tolomatic.com

Or Call 1-800-328-2174 for Excellent Customer Service & Technical Support

SPEED vs THRUST

IMA44

CALCULATING RMS THRUST AND VELOCITY

Servo motor actuator systems have two speed/thrust curves: one for continuous duty operation and another for intermittent (peak) duty. A servo system can be selected according to the total thrust and maximum velocity indicated by the continuous duty curve. However, by calculating the root mean square (RMS) thrust based on the application duty cycle, you may be able to take advantage of the higher peak thrust available in the intermittent duty range. The RMS thrust must fall within the continuous duty region of the motor/drive and the application maximum thrust must fall under the peak thrust of the actuator. Use the following formulae when calculating the RMS thrust and velocity. When selecting an integrated servo actuator system, it is necessary to add a margin of safety to the thrust and velocity required to move the load. The recommended margin for servo motors is 15%.

$$\mathbf{T}_{\text{RMS}} = \sqrt{\frac{\text{sum } (\mathbf{T}_{i}^{2} \times \mathbf{t}_{i})}{\text{sum } (\mathbf{t}_{i})}}$$

$$\mathbf{V}_{\text{RMS}} = \sqrt{\frac{\text{sum } (\mathbf{V}_{i}^{2} \times \mathbf{t}_{i})}{\text{sum } (\mathbf{t}_{i})}}$$

Where:

CONTINUOUS

 $\mathbf{T}_{\text{RMS}} = \text{RMS Thrust}$

 $\mathbf{V}_{\text{RMS}} = \text{RMS Velocity}$

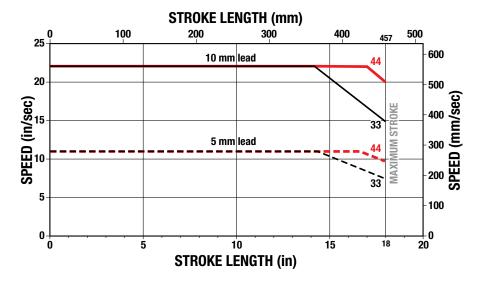
 $\mathbf{T}_{i} = \text{Thrust during interval i}$

 \mathbf{V}_{i} = Velocity during interval i

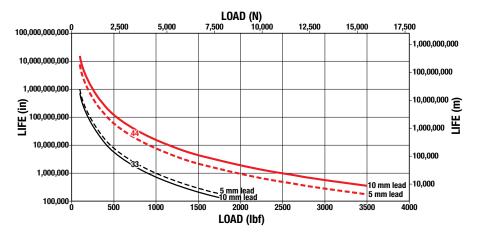
 $\mathbf{t}_{_{\mathrm{i}}} = \text{Time interval i}$

BRAKE CONSIDERATIONS

An unpowered IMA will require a brake to maintain its position if the force on the actuator exceeds Back Drive Force listed in the table on page 6.


A brake can be used with the actuator to keep it from back-driving, typically in vertical applications. A brake may be used for safety reasons or for energy savings allowing the actuator to hold position when unpowered. See page 15 for ordering information.

NOTE: The optional Spring-Applied/Electronically-Released Brake requires 24V power. Input current rating: IMA33 - 0.516 Amps; IMA44 - 0.67 Amps.


QUESTIONS?

Contact Tolomatic for assistance in choosing the correct IMA actuator and options required for your application.

CRITICAL SPEED

BALL SCREW LIFE

NOTE: The L₁₀ expected life of a ball screw linear actuator is expressed as the linear travel distance that 90% of properly maintained ball screws manufactured are expected to meet or exceed. This is not a guarantee and this graph should be used for estimation purposes only.

The underlying formula that defines this value is:

$$\mathbf{L}_{10} = \left(\frac{\mathbf{C}}{\mathbf{F}} \right)^3 =$$

Travel life in millions of inches, where:

C = Dynamic load rating (lbf)

F = Cubic mean applied load (lbf)

All curves represent properly lubricated and maintained actuators.

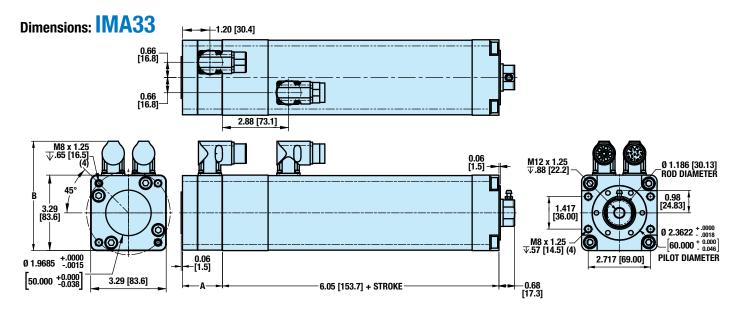
SIDE LOAD CONSIDERATIONS

The IMA integrated motor actuator is not meant to be used in applications where side loading occurs.

Loads must be guided and supported. Loads should be aligned with the line of motion of the thrust rod.

Side loading will affect the life of the actuator.

LUBRICATION: DO NOT FILL WITH GREASE!


IMA actuators have been lubricated at the factory and are ready for installation. For many applications the unit is greased for life.

- For light to moderate use, no additional lubrication is required.
- For severe duty use, periodic re-lubrication will be necessary to maintain optimum performance. Grease should be added every 1,000 hours of operation.
- Re-lubricate with Mobolith SHC220 (IMA33: 3.0 g; IMA44 5.0 g) in the grease zerk provided.

Overfilling will cause a reduction in performance, excessive heat build up and potential premature failure.

QUESTIONS?

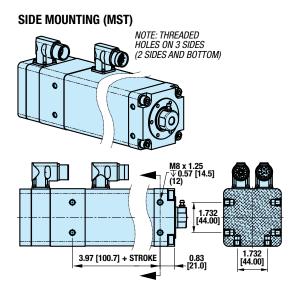
Contact Tolomatic for assistance in choosing the correct IMA actuator and options required for your application.

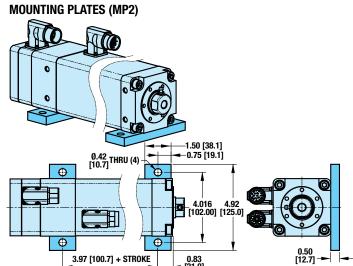

FEEDBACK	DIM	"A"
FEEDDAGK	in	mm
Digital Encoder	1.74	44.2
Digital Encoder with Brake	3.18	80.8
Digital Encoder (Emerson NT)	1.98	50.3
Digital Encoder with Brake (Emerson NT)	3.68	93.5
Resolver	1.74	44.2
Resolver with Brake	3.18	80.8
Absolute Encoder	TBD*	TBD*
Absolute Encoder w/ Brake	TBD*	TBD*

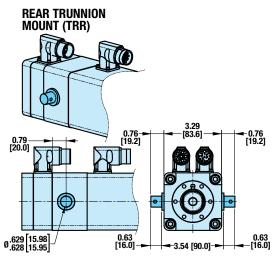
*TBD = To Be Determined

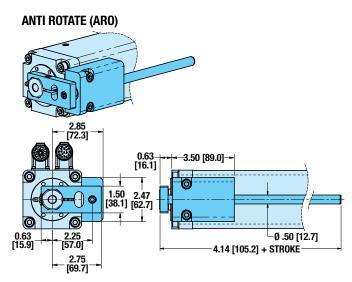
CONNECTORS	DIM	"B"
CONNECTORS	in	mm
Tolomatic Standard		
Bosch MSK Motor Series	4.81	122.2
Emerson FM Series	4.01	122.2
Lenze MCS Motor Series		
Emerson NT Series**	4.81	122.2

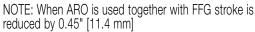
**Uses Box Mount Connectors (IP67 not available)

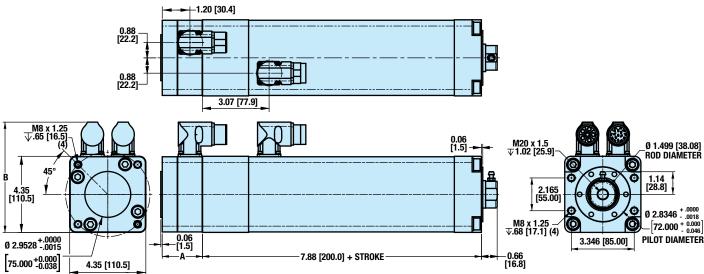

IMA 9





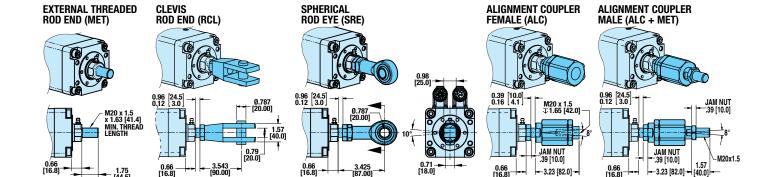

- Go to www.tolomatic.com
- Click on this icon
- Configure stroke length and download
- Place the solid model in your application assembly


Dimensions: IMA33 **REAR CLEVIS MOUNT (PCD) FRONT FLANGE MOUNT (FFG)** FRONT TRUNNION MOUNT (TRF) 1.260 + .024 32.00^{+0.61} **-**0.76 [19.2] $0.4724^{+.0017}_{-.0000}$ 12.000 ^{+0.043} 0.945 ø.629 ø.628 15.98 15.95 Φ 4.961[126.00] "A" SEE PAGE 9 -3.54 [90.0] 5.91[150.0] 60.00+0.00



IMA 10

Dimensions: IMA44

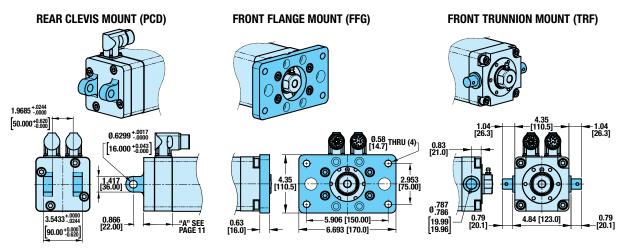

FEEDBACK	DIM	"A"
FEEDDAGK	in	mm
Digital Encoder	1.74	44.2
Digital Encoder with Brake	3.15	80.0
Digital Encoder (Emerson NT)	1.98	50.3
Digital Encoder with Brake (Emerson NT)	3.50	89.0
Resolver	1.74	44.2
Resolver with Brake	3.15	80.0
Absolute Encoder	TBD	TBD
Absolute Encoder with Brake	TBD	TBD

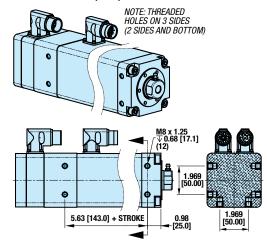
*TBD = To Be Determined

CONNECTORS	DIM	"B"
CONNECTORS	in	mm
Tolomatic Standard		
Emerson FM Series	5.89	149.6
Lenze MCS Motor Series		
Bosch MSK Motor Series	5.89	149.6
Emerson NT Series**	5.50	139.7
	""	

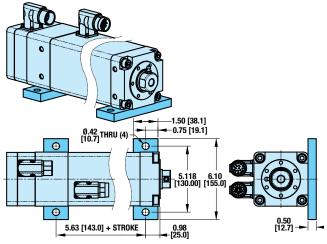
--3.23 [82.0]-

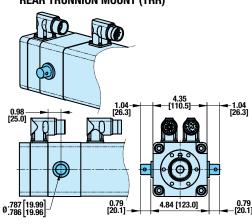
IMA 11

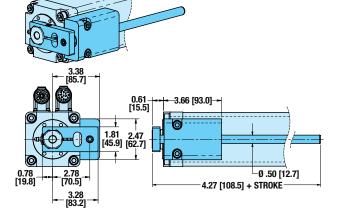



- Go to www.tolomatic.com
- Click on this icon
- · Configure stroke length and download
- Place the solid model in your application assembly

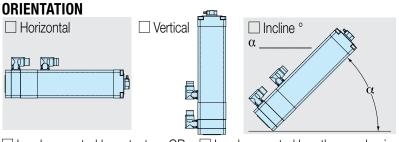
^{**}Uses Box Mount Connectors (IP67 not available)


Dimensions: IMA44


SIDE MOUNTING (MST)


MOUNTING PLATES (MP2)

REAR TRUNNION MOUNT (TRR)


ANTI ROTATE (ARO)

NOTE: When ARO is used together with FFG stroke is reduced by 0.51" [13.0 mm]

APPLICATION DATA WORKSHEET Fill in known data. Not all information is required for all applications

Load supported by actuator C)K ∐L	oad supported by oth	ner mechanism	
MOVE PROFILE		STROKE LENGTH	millimeters (SM)	PRECISION Repeatability
Move Distance			etric)	☐ inch ☐ millimeters
☐ inch ☐ millimeters		▲ NOTE: If load or force	e changes during cycle	OPERATING ENVIRONMENT
Move Time	sec	NOTE: If load or forcuse the highest number	bers for calculations	Temperature, Contamination, etc.
Max. Speed mm/sec		EXTEND	RETRACT	
	222	LOAD	LOAD	
Dwell Time After Move	sec	☐ lb. ☐ kg.	☐ lb. ☐ kg.	
RETRACT		(U.S. Standard) (Metric)	(U.S. Standard) (Metric)	
Move Distance		EUBUE	EUBUE	

☐ kg.

FORCE

(U.S. Standard)

 \square lb.

 \square kg.

(Metric)

MOTION PROFILE

(U.S. Standard) (Metric)

FORCE

 \square lb.

sec

sec

+	-50	eec	1 ()-	+	۰	\vdash					H		Н			-				Н				H	Н		Н			H		H
	Н	+	Н	+	+	+	+			H			H	H	⊢	Н		\dashv	-	-	Н	Н		Н		H	H		Н	H	H	H	Н	H
	Н	+		+	+	+	٠			H			Н		Н			\dashv			Н	Н		Н		Н	Н		Н					H
	Н	+		+	+	+	٠			Н	Н		Н	Н	Н			\dashv	-		Н	Н		Н		Н	Н		Н	Н	H	H	Н	Н
	Н	+		+	+	+	+		Н	Н	Н	Н	Н		H								_	Н		Н	Н	Н	Н		H	H	Н	Н
	Н	+	Н	+	t	+	۰			Н			H	Н	Н						Н	Н		Н		Н	Н		Н	Н	H	H	Н	Н
	H	+		\pm	t	+	t			Н			Н		Н						П					Н	Н		Н					
	Н	_	П	\top	+	+	t	т					Т		Н				Т		Π	П	Т	Т		Т	Т		Н			Т		
	П					T	Т			Г			Г		Г									Т		Г	Т		Г		Г	Г		
	П		П		T	T	Т			Г			Г		Г									Т		П	Т		Г		Г	Г	П	
	П					Т	Т								Г							Π				П			Г					Г
	П				T	Т	Т			П	Г		Г	Г	Г							П		П		П	П		Г	Г				Т
	П				Т	Т	П			П	Г		Г	Г	Г											П			Г	Г				
	П				Т	Т	Г			Г	Г		Г	Г	Г									П		Г	П		Г	Г				
	Н			_	+	+	╀								H									L		-T	im	e (or [Dis	tar	CE	(
	\vdash	_		_	_	_	+	-		-			\vdash		Н		_		-			Н		Н		Н	Н		Н	Н				
	Н	+		_			H								H	Н		_			Н					H	H		H			H		H
				+	+	+																												
_																																		

Graph your most demanding cycle, including accel/decel, velocity and dwell times. You may also want to indicate load variations and I/O changes during the cycle. Label axes with proper scale and

CONTACT INFORMATION
Name, Phone, Email Co. Name, Etc.

☐ inch

Move Time

Max. Speed _ ☐ in/sec

NO. OF CYCLES

HOLD POSITION?

per minute

☐ After Move

Dwell Time After Move _____

☐ millimeters

☐ mm/sec

per hour

☐ Required

☐ Not Required ☐ During Power Loss

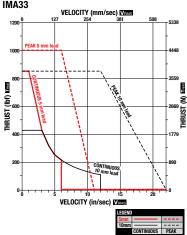
USE THE TOLOMATIC SIZING AND SELECTION SOFTWARE AVAILABLE ON-LINE AT www.tolomatic.com OR... CALL TOLOMATIC AT 1-800-328-2174. We will provide any assistance needed to determine the proper actuator for the job.

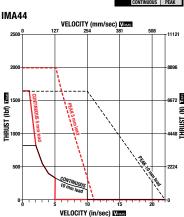
FAX 1-763-478-8080

EMAIL help@tolomatic.com

Selection Guidelines

ESTABLISH MOTION PROFILE


Using the application stroke length, desired cycle time and loads establish the motion profile details.


the actuator's body can approach 180°F (82°C) in aggressive applications. Adequate clearance to ensure actuator's ambient conditions do not rise drastically should be allowed.

COMPARE PEAK THRUST AND SPEED TO PEAK CAPACITIES

Calculate the application required peak thrust and speed and compare to graphs on page 7. (repeated below) Select an actuator that achieves the necessary peak thrust and speed.

COMPARE CONTINUOUS THRUST AND SPEED TO CONTINUOUS CAPACITIES

Calculate the Continuous or RMS thrust and speed required and compare to graphs on page 7. (repeated above) Select an actuator that achieves the necessary thrust and speed for continuous operation. See complete instructions on page 7 for help calculating continuous force.

$$\mathbf{T}_{\text{RMS}} = \sqrt{\frac{\text{sum } (\mathbf{T}_{i}^{2} \times \mathbf{t}_{i})}{\text{sum } (\mathbf{t}_{i})}} \quad \mathbf{V}_{\text{RMS}} = \sqrt{\frac{\text{sum } (\mathbf{V}_{i}^{2} \times \mathbf{t}_{i})}{\text{sum } (\mathbf{t}_{i})}}$$

TEMPERATURE

The IMA is intended to operate in an environment with an ambient temperature between 50-122° F, (10-50° C). Performance should be de-rated if the ambient temperature is above 77° F (25° C). Contact the factory if the ambient temperature does not fit within this range. NOTE: Temperature of

BRAKE CONSIDERATIONS

An unpowered IMA will require a brake to maintain its position if the force on the actuator exceeds Back Drive Force listed in the table on page 6.

A brake can be used with the actuator to keep it from back-driving, typically in vertical applications. A brake may be used for safety reasons or for energy savings allowing the actuator to hold position when unpowered. See page 15 for ordering information.

NOTE: The optional Spring-Applied/Electronically-Released Brake requires 24V power. Input current rating: IMA33 - 0.516 Amps; IMA44 - 0.67 Amps.

CHOOSE MOTOR CONNECTORS & FEEDBACK DEVICE

Connector choice and wiring emulates popular motor manufacturers for compatibility.

Current connector choices include:

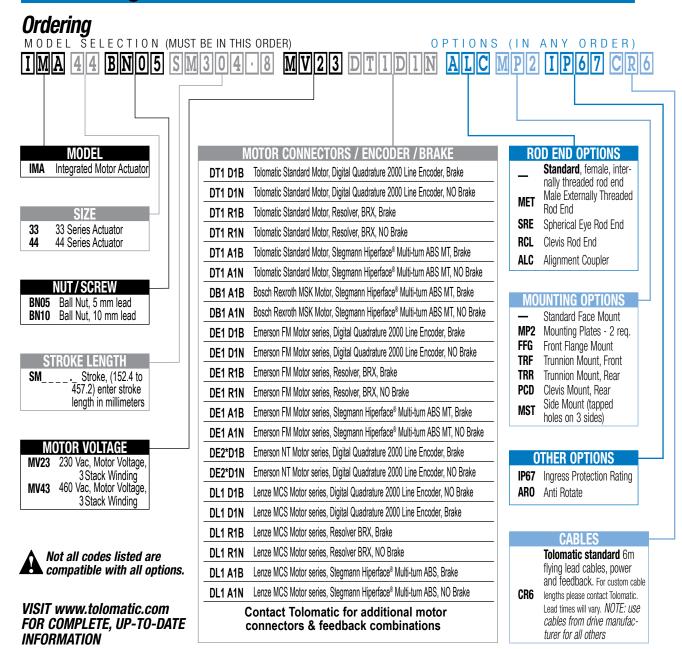
- Bosch Rexroth MSK Series
- Emerson FM & NT Series
- Lenze MCA Series

Current feedback choices include:

- Digital Encoder
- Absolute Encoder
- Resolver

Contact Tolomatic for additional motor connectors and feedback combinations

TCONSIDER MOUNTING & ROD END OPTIONS


Examine mounting options dimensional drawings on page 9 to 12. Standard mounting on the IMA are 4 tapped holes on the front rod end face of the actuator. The Side Mount option (MST) includes 12 tapped holes, 4 on each side and 4 on the bottom of the actuator. Other fixed mounting options are the Front Flange Mount (FFG) and Mounting Plates (MP2). Pivoting mount options are Front Trunnion (TRF), Rear Trunnion (TRR) and Rear Clevis Mount (PCD).

Rod End Options include: External Threaded Rod End (MET), Clevis Rod End (RCL), Spherical Rod Eye (SRE) and Alignment Coupler (ALC).

NOTE: Regardless of the mounting option chosen, care must be taken to ensure that the load is guided and in-line with the thrust rod's line of motion. Misalignment of the thrust rod's line of motion will cause degradation in the actuator's expected life.

CONSIDER ENVIRONMENTAL RATING AND ANTI-ROTATE OPTIONS

The environmental rating for a standard IMA is IP65, choose IP67 for protection against water and dust ingress. Choose the Anti-Rotate Option (ARO) if required. Call Tolomatic at 1-800-328-2174 for help in determining the best actuator for your application.

*NOTE: IP67 is not available with DE2 (Emerson NT connectors)

Call Tolomatic 1-800-328-2174 to determine available options and accessories based on your application requirements.

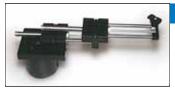
Replacement Option Parts Ordering

-	-
PART NO.	DESCRIPTION
2733-9014	Spherical Rod Eye Kit, IMA33
2744-9014	Spherical Rod Eye Kit, IMA44
2733-9015	Clevis Rod End Kit, IMA33
2744-9015	Clevis Rod End Kit, IMA44
2132-1060	Alignment Coupler Kit, IMA33
2150-1060	Alignment Coupler Kit, IMA44
2733-9010	Mounting Plate Kit, IMA33
2744-9010	Mounting Plate Kit, IMA44
2733-9018	Front Flange Mount Kit, IMA33
2744-9018	Front Flange Mount Kit, IMA44
2733-1045	Rear Clevis Mount, IMA33
2744-1045	Rear Clevis Mount, IMA44
2733-9075	Anti Rotate, Bearing Assy, IMA33 & IMA 44

DESCRIPTION
Anti Rotate, Shaft Clamp, IMA33
Anti Rotate, Shaft, IMA33 - Indicate Stroke
Anti Rotate, Shaft Clamp, IMA44
Anti Rotate, Shaft, IMA44 - Indicate Stroke
Motor Power Cable, IMA33 NO Brake
Motor Power Cable, IMA33 with Brake
Motor Power Cable, IMA44 NO Brake
Motor Power Cable, IMA44 with Brake
Feedback Cable, 12 pin (Resolver & Stegmann)
Feedback Cable, 17 pin (Digital Encoder)

All parts are listed for REPLACEMENT ONLY. If not ordered on original unit the IMA may require additional tapped holes or replacement rod end. Contact Tolomatic.

THE TOLOMATIC DIFFERENCE What you expect from the industry leader:


EXCELLENT CUSTOMER SERVICE & TECHNICAL SUPPORT

Our people make the difference! Expect prompt, courteous replies to all of your application and product questions.

INDUSTRY LEADING DELIVERIES

Standard catalog products are built to order and ready-to-ship in 5 days or less. Modified and custom products ship weeks ahead of the competition.

INNOVATIVE PRODUCTS

From standard catalog products... to modified products... to completely unique custom products, Tolomatic designs and builds the best solutions for your challenging applications.

SIZING & SELECTION SOFTWARE

Windows® compatible, downloadable from our website – FREE – the best tool of its kind on the market! Product selection has never been easier.

3D MODELS & 2D DRAWINGS AVAILABLE ON THE WEB

Easy to access CAD files are available in many popular formats.

ALSO CONSIDER THESE OTHER TOLOMATIC PRODUCTS:

PNEUMATIC PRODUCTS

RODLESS CYLINDERS: Band Cylinders, Cable Cylinders, MAGNETICALLY COUPLED CYLINDERS/SLIDES; GUIDED ROD CYLINDER SLIDES; ROTARY ACTUATORS
"FOLDOUT" BROCHURE #9900-9075 PRODUCTS BROCHURE #9900-4028 www.tolomatic.com/pneumatic

ELECTRIC PRODUCTS

ROD & GUIDED ROD STYLE ACTUATORS, HIGH THRUST ACTUATORS, SCREW & BELT DRIVE RODLESS ACTUATORS, MOTORS, AXIOM DRIVES/CONTROLLERS
"FOLDOUT" BROCHURE #9900-9074 PRODUCTS BROCHURE #9900-4016 www.tolomatic.com/electric

POWER TRANSMISSION PRODUCTS

GEARBOXES: Float-A-Shaft®, Slide-Rite®; DISC CONE CLUTCH; CALIPER DISC BRAKE
"FOLDOUT" BROCHURE #9900-9076 PRODUCTS BROCHURE #9900-4029 www.tolomatic.com/pt

3800 County Road 116 • Hamel, MN 55340 U.S.A. Toll-Free: 1-800-328-2174

All brand and product names are trademarks or registered trademarks of their respective owners. Information in this document is believed accurate at time of printing. However, Tolomatic assumes no responsibility for its use or for any errors that may appear in this document. Tolomatic reserves the right to change the design or operation of the equipment described herein and any associated motion products without notice. Information in this document is subject to change without notice.

Visit www.tolomatic.com for the most up-to-date technical information

