
Magnetic Field Sensors

Magnetic Field Sensors

Magnetic field sensors respond to an external magnetic field. Their primary application is sensing piston position in pneumatic cylinders with aluminum walls.

- –non-contact –wear free –no cross-talk
- -bounce-free output signal
- -LED function indication
- -switching independent of magnetic
- field polarization
- -small housing sizes
- -mountable on all types of cylinders

Electronics Section 2

BMF 305 Solid State Switch

Series Connection

C E c(UL)us

BMF 305

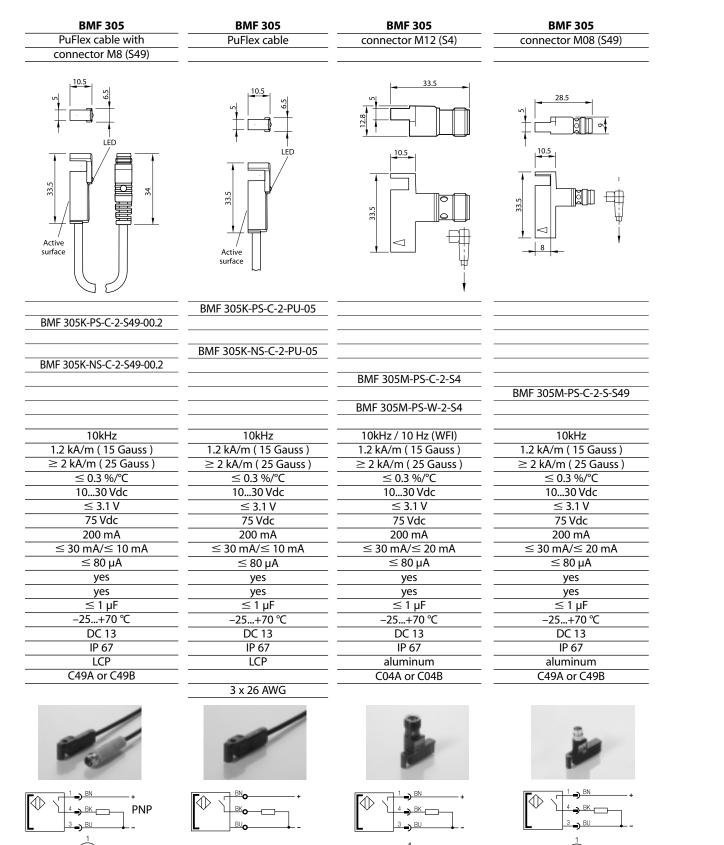
With its versatile mounting system, the BMF 305 is the most flexible magnetic field sensor available. A wide selection of interchangeable brackets allows the BMF 305 to fit virtually any cylinder type.

Advantages

- -Brackets for all common cylinder types
- Pre-wired cable or quick disconnect
- -Weld-immune version available

Features

- Interchangeable bracket system
- Non-contact and wear-free sensing of piston location
 Insensitive to contamination
- Detects piston position through the cylinder wall
 Can be attached to any standard cylinder size using
- available mounting brackets —Eliminates multiple switchpoints


To order a set

Sensor and mounting bracket: Please include the bracket code in the part number e.g. BMF 305K/**HW20**-PS-C-2-PU-05 Magnetic field sensor and bracket, includes metric hex wrench

PNP NO	5 m cable
	0.2 m cable and connector M08
	0.2 m cable and connector M12
NPN NO	5.0 m cable
NPN NO	0.2 m cable and connector M08
PNP NO	with connector M12
PNP NO	with connector M08
PNP NO	weld-immune with connector M12

Frequency of operating signals
Rated operating field strength H _n
Assured operating field strength H _a
Temperature drift of turn-on point
Supply voltage U _B
Voltage drop U _d at $I_e \le 100 \text{ mA}$
Rated insulation voltage U _i
Rated operational current l _e
No-load supply current I _o damped/undamped
Off-state current I _r
Protected against polarity reversal
Short circuit protected
Permissible load capacitance
Ambient temperature range T _a
Utilization categories
Degree of protection per IEC 529
Housing material
Recommended connector
Number of wires x gauge

See following pages for mounting bracket options

NPN

BMF 305 Reed **Switch**

ORTMAN CYLINDERS

CY

Series

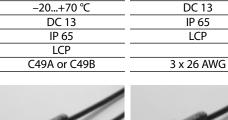
Connection

Electronics Section 2

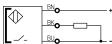
BMF 305 Reed Switch

The economical BMF 305K-R reed switch has an LED for function display and as a setup aid. The recovery diode for switching an inductive load is already integrated.

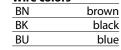
Advantages

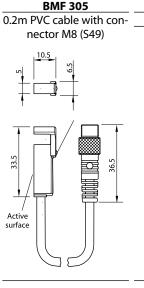

- -Fast and easy to install
- -Fits any standard cylinder size
- using available brackets
- -No loss of the setpoint when replacing a switch

Note: Reed switch is configured for PNP operation with respect to operation of the function LED. The reed switch itself is inherently bi-directional for current.


PNP	Normally open
Normal Field S	
Operating free	
Supply voltage	
Rated operatir	
Permissible loa	ad capacitance
Ambient temp	perature T _a
Utilization cate	
	tection per IEC 529
Housing mate	rial
Recommende	d connector
Number of wi	res x gauge

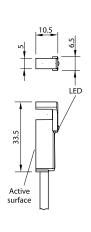
To order a set


Sensor and mounting bracket: Please include the bracket code in the part number e.g. BMF 305K/HW20-R-PS-F-3-03 Magnetic field sensor and bracket, includes metric hex wrench



BMF 305K-R-PS-F-3-S49-

73 KA / m (38 Gauss)


00.2 1 kHz

10...30 Vdc

500 mA

 $\leq 0.5 \, \mu F$

CE

BMF 305K-R-PS-F-3-03

> 3 KA / m (38 Gauss) 1 kHz

10...30 Vdc

500 mA

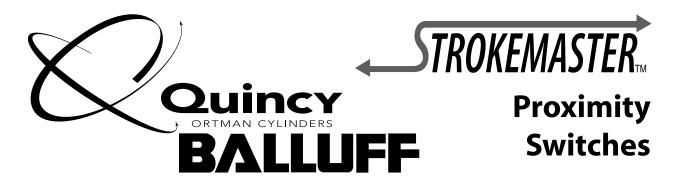
 $\leq 0.5 \, \mu F$

-20...+70 °C

BMF 305

3m PVC cable

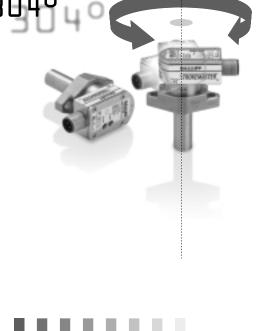
	1_	BN	
$\langle \neg \rangle$	4	,	

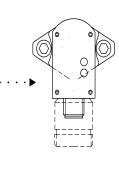


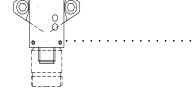
PNP

Flexible solutions for an often inflexible world

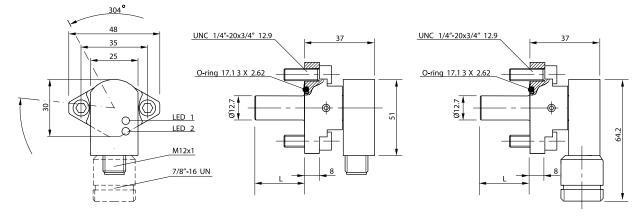
Balluff's Strokemaster[®] cylinder-position sensors provide precision end-of-stroke sensing for hydraulic/pneumatic cylinders. They also eliminate post-installation cable management problems with 304° of rotational freedom on the connector.


Strokemaster[®] sensors allow infinitely adjustable and lockable cable positioning anytime after mounting to the cylinder. Without breaking the seal, Strokemaster[®] enables quicker installation of the sensor and neat cable runs.


A high-pressure, inductive proximity sensor, the Strokemaster[®] provides a 2mm (0.8") sensing range to pick up the "spud" of hydraulic/pneumatic cylinders and indicate fully retracted or extended position. It mounts with just two screws, and seals with an O-ring. Withstanding cylinder pressures to 3000psi (207 BAR), the embeddable design keeps most of the switch protected within the cylinder, with only a 0.62" (16 mm) high housing exposed outside. The rotating housing can be locked in any desired position with either one of two set screws.


Strokemaster[®] sensors are available in 3-wire DC and 2-wire AC/DC versions, both with mini or micro connectors. Switching frequency is 50 Hz in the AC/DC versions. All units are weld-field immune, short-circuit and reverse-polarity protected. They fit all popular cylinder designs, with standard probe lengths of 1.025" - 4.560" (26mm - 115.8mm), along with available custom probe lengths and spacers. Probes are made of stainless steel with a ceramic face. Both DC and AC/DC sensors have all metal housings.

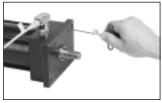
Strokemaster[®] is CE-certified, and its housing is sealed to IP67 requirements.



ORTMAN CYLINDERS	
Mounting	Flush
Rated operating distance sn	2 mm

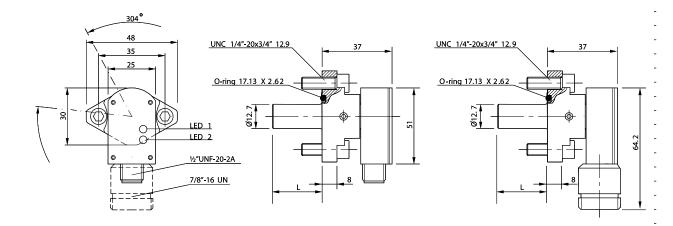
0...1.6 mm

PNP Normally-open	BES 516-300-S 295/1.025"4.560"-S4
Rated operational voltage U _e	24 Vdc
Supply voltage U _B	1030 Vdc
Voltage drop U _d at l _e	≤ 2.5 V
Rated insulation voltage U	75 Vdc
Rated operational current le	200 mA
No-load supply current l ₀ damped/undamped	\leq 18 mA/ \leq 10 mA
Off-state current I _r	\leq 80 μ A
Protected against polarity reversal	yes
Short circuit/overload protected	yes/yes
Load capacitance	\leq 1.0 μ F
Repeat accuracy R	≤ 5 %
Ambient temperature range T _a	−25+70 °C
Operating frequency f	10 Hz
Utilization categories	DC 13
Function/Operating voltage indication	yes/yes
Degree of protection per IEC 529	IP 67
Housing material	stainless steel/aluminum
Material of sensing face	ceramic
Connection	connector
Approvals	cULus
High pressure rated up to	207 bar (3000 psi)
Standard lengths (L)	1.025",1.250",2.062",2.875",3.775",4.560",
	other lengths on request
Recommended connector	C04 AEL-00-VY-050M

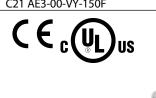


Assured operating distance sa

Bolt sensor to cylinder. CECULUS



Position cable to desired orientation (even over mounting bolts).



Lock chosen position with one or both of the two integral set screws.

Mounting	Flush	Flush
Rated operating distance sn	2 mm	2 mm
Assured operating distance sa	01.6 mm	01.6 mm

AC/DC	Normally-open	BES 516-200-S 2/1.025"4.560"-S 21	BES 516-200-S 2/1.025"4.560"-S5
Rated operati	onal voltage U _e	110 Vac	110 Vac
Supply voltag	e U _B	20250 Vac/dc	20250 Vac/dc
Voltage drop	Ud at le	\leq 6 V	≤6V
Rated insulati	on voltage U _i	250 Vac	250 Vac
Rated operati	onal current le	500 mA	500 mA
Minimum ope	erational current Im	5 mA	5 mA
Off-state curre	ent l _r	\leq 1.7 mA at 110 Vac	\leq 1.7 mA at 110 Vac
Inrush current	lk (t = 20 ms)	3 A max./1 Hz	3 A max./1 Hz
Protected aga	inst polarity reversal	yes	yes
Short circuit p	protected	yes	yes
Repeat accura	acy R	≤5%	≤5 %
Ambient tem	perature range Ta		
Operating fre		≤ 50 Hz	\leq 50 Hz
Utilization cat	egories	AC 140/DC 13	AC 140/DC 13
Function/Ope	erating voltage indication	yes/yes	yes/yes
Degree of pro	tection per IEC 529	IP 67	IP 67
Insulation clas	55	1	1
Housing mate	erial	stainless steel/nickel plated brass	stainless steel/nickel plated brass
Material of se	nsing face	ceramic	ceramic
Connection		connector	connector
Approvals		cULus	cULus
High pressure	rated up to	207 bar (3000 psi)	207 bar (3000 psi)
Standard leng	ths (L)	1.025",1.250",2.062",2.875",	1.025",1.250",2.062",2.875",
		3.775",4.560",other lengths on request	3.775",4.560",other lengths on request
Recommende	ed connector	C21 AE3-00-VY-150F	C05 AE1-00-VY-150F

ICROPULSE Linear Transducers

Electronics Section 2

Z Standard Rod Style

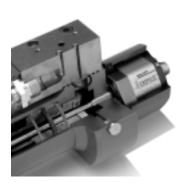
The Z style product line is one of the most versatile lines in the Micropulse[™] family. With all the electrical options, interfacing to your control system will never be a problem.

Built into the hydraulic cylinder, or external, the transducer provides continuous, absolute position feedback.

The Z housing offers a variety of outputs, replaceable electronics and the ability to adjust analog signal in the field.

Applications:

Balluff transducers offer features, which assure reliable operation in many areas of automation and process technology, even under extreme ambient conditions:

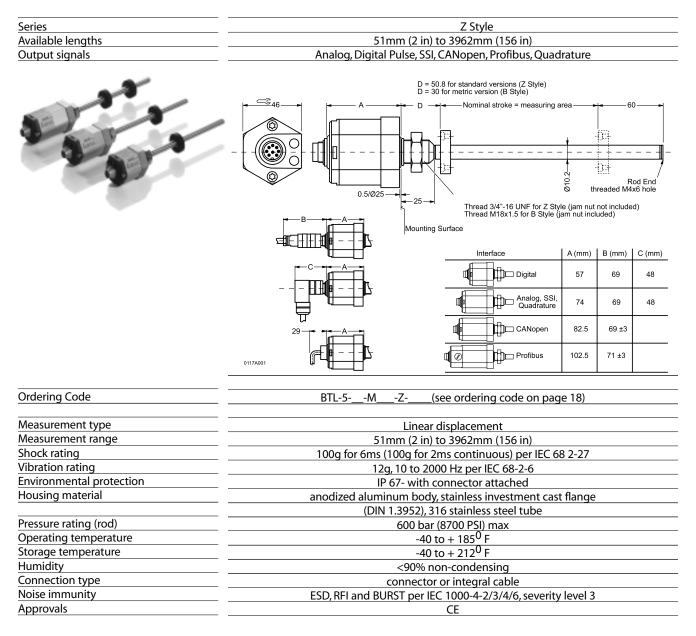

- Hydraulic cylinders
- Tooling and tool handling
- Presses
- Casting and rolling mills
- Foundries
- Injection molding
- Leveling machines
- Transport systems
- Lift controls
- Level monitoring
- Tunnel boring equipment
- Die casting machinery
- Portal robots
- Woodworking machinery
- Flight simulators
- Cutting/slitting machinery
- Conveying
- Packaging machines
- Windmills
- Elevators

Features:

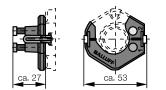
- Absolute, non-contact position feedback
- Highly accurate, super reliable, maintenance-free
- Heavy duty stainless steel pressure tube
- Rated to 8700 psi
- Replaceable Electronics
 Module
 - -Plug and play field repair, fluid circuit remains intact -Reduced downtime
 - -One module-any
 - stroke length
- Wide variety of available outputs

 Analog voltage or
 - current
 - -Digital START/STOP
 - -Digital Pulse-Width-Modulated (PWM) -Synchronous Serial
 - Interface (SSI)
 - -CANopen -Profibus-DP
 - -Quadrature
- 100 % scalable output signal (analog versions)
- User-scalable using supplied programming tool

- Programming tool is removable to guard against tampering
- Three programming modes to suit any application requirement
- Teach-In Used to set the "zero" and "end" values anywhere within the nominal factory stroke range
- Adjust Used to perform manual adjustment of output signal values
- Online Adjust Used to perform real-time adjustment of output signal without disrupting the control-loop.



Dimensions General Specifications


Z Standard Rod Style

Warning:

These products are not rated for safety applications.

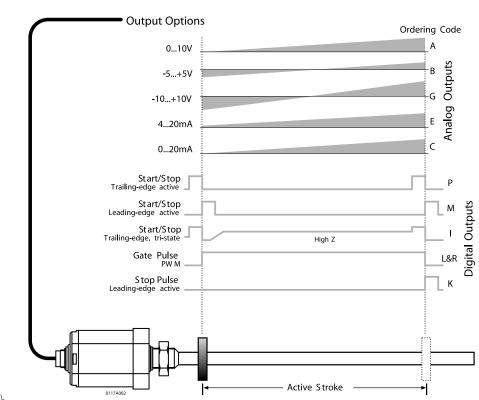
Calibration device BTL-5-Programming tool

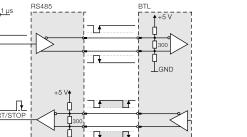
Supplied with analog versions

Z Standard Rod Style

Electrical Options

•			•
Electrical interface	Analog	Analog	Digital
Electrical type	Voltage	Current	Start/Stop & PWM
Part No. Code	A, B, G	E,C	P, M, I, L, K
Output	0+10V,-5+5V,-10+10V	020 mA, 420 mA	Start/Stop or Pulse-width- modulated (RS422/RS485)
Output load	>2KΩ (5 mA max)	<u>≤</u> 500Ω	per spec
Resolution		≤0.66 µA	Controller dependent
Non-linearity	\pm 100µm to 500mm stroke,	\pm 100µm to 500mm stroke,	±100µm to 500mm stroke,
	±0.02 % over 500mm stroke	±0.02 % over 500mm stroke	±0.02 % over 500mm stroke
Repeatability	Resolution/ min 2µm	Resolution/ min 2µm	Resolution/ min 2µm
Hysteresis	≤5µm	≤5µm	≤5µm
Sampling rate	2KHz	2KHz	500 Hz stroke >2000mm 1KHz stroke <2000mm
Temperature coefficient*	[150 µV/° C + (5ppm/°C*P*V/NL)] * DT	[0.6 µA/°C + (10 ppm/°C*P*V/NL)] * DT	(6 µm + 5 ppm*NL) / °C
Operating voltage	10-30 Vdc	10-30 Vdc	10-30 Vdc
Operating current	<150 mA	<150 mA	<100 mA
. 5	(at 1K Hz sampling rate)	(at 1K Hz sampling rate)	(at 1K Hz sampling rate)


Electronics Section 2


Analog voltage output versions incorporate both rising and falling outputs. Analog current version must be ordered as rising or falling outputs.

*Temperature coefficient variables:

V output range in V =

- output range in [mA] = L
- temperature change magnet position $\Delta \mathbf{T}$ =
- Ρ =
- NL =stroke length

Analog and Digital Output Options for the Micropulse Z Style

RS-485 signal transmission with digital outputs

dt~s

GND

INI

Z Standard Rod Style

Network Options

CANopen

This interface provides an efficient connection to machines using CANopen. Features include:

- Process data objects incorporating position, velocity
- and set-point information - Emergency object for set-points
- Service data objects for
- configuring transducer modes - Synchronization objects for network wide activities

Profibus

This interface provides an efficient connection to machines using Profibus. Features of this interface include:

- Single telegram message for fast updates even with 4 magnets
- Operates at 12 Mbps
- GSD file provided to configure telegram message
- Sync and Freeze functions available for coordination between other devices

Ordering Code	Н	Т
Resolution	Position 5µm, Velocity 0.1mm/s increments(selectable)	Position 5µm (configurable) Velocity 0.1mm/s increments (configurable)
Non-linearity	±30μm at 5μm resolution	±30μm at 5μm resolution
Repeatablity (resolution + hysteresis)	±1 digit	±1 digit
Hysteresis	≤ 1 digit	\leq 1 digit
Sampling rate	1kHz	1kHz
Temperature coefficient *	(6μm + 5ppm x L)/°C	(6μm + 5ppm x L)/°C
Operating voltage	10-30 Vdc	10-30 Vdc
Operating current	\leq 100 mA	≤120 mA
Network isolation	yes	yes
Network speed	10, 20, 50, 100, 125, 250,	9.6, 19.2, 93.7, 187.5,
·	500, 800, 1000 kBaud	900, 1500, 12000 kBaud
Network compatibility	CiA Standard DS301	EN 50170
	Rev. 3.0 (Encoder Profile)	(Encoder Profile)
Address selection	Software	DIP switch
Communication types	Producer/consumer	Master/Slave
Configuration software	none required	GSD file
Number of magnets supported	1,2 or 4	1,2 or 4
	Position 32-bit integer Velocity 16-bit integer Set points 8-bit integer	Position (1 per magnet) 32-bit integer Velocity (1 per magnet) 32-bit integer
	BTL5-H1Mxxxx-Z-S92	BTL5-T1_0-Mxxxx-Z
	Baud Rate 0 = 1MBaud 1 = 800 kBaud 2 = 500 kBaud 3 = 250 kBaud 4 = 125 kBaud 5 = 100 kBaud 6 = 50 kBaud 7 = 20 kBaud 8 = 10 kBaud Process Data $1 = 1 \times position \& 1 \times velocity$ $2 = 2 \times position \& 2 \times velocity$ $3 = 4 \times position$ Stroke Length	Connection Type S 103 = 3 connectors: Power: 3-pin male, M8 Bus in: 5-pin male, M12 Bus out: 5-pin female, M12 S 86 = 12-pin female No. of Magnets 1 = 1 magnet 2 = 2 magnets 3 = 4 magnets Stroke Length xxxx = length in mm (see chart on page 18)

xxxx = length in mm (see chart on page 18)

Quincy , ORTMAN CYLINDERS

Specialized Interfaces

SSI

The SSI (synchronous serial interface) output interfaces with popular control systems from manufacturers such as Allen-Bradley, Delta Computer, Siemens, Parker and many others. Cable spans can be up to 400m with noise-free operation. The internal linearization of this interface makes it ideal for applications requiring the best accuracy available. Z Standard Rod Style

Quadrature

The quadrature output interfaces directly to standard encoder inputs (90° out of phase, A & B). This configuration gives you more interface options for connecting to motion based systems. Operating modes can be either free-running or synchronous (switch selectable) depending on the control system's requirements.

Q	
1, 2, 5 10μm, 0.00	11" or 0 0001"
(switch sel	
±100mm to 500mr	
over 500 m	
resoluti	on +
(±2 x resolution or 5µm,	whichever is greater)
±2 x resolution or 5µm,	
Free-running: 1	ms, 2ms, 4ms
Synchronous: 50	
<u>(6µm + 5pp</u>	
10, 200, 400	
Free-running or	
(switch sel	
10-30 ≤ 80r	
Standard A & B	
z z	
BTL5-Q -	Mxxxx-Z-S140
Mode/Update Ra	te
	initiated by controller)
1 = free-running, 1	
2 = free-running, 2	2ms update
4 = free-running, 4	1ms update
System Resolutio	on
0 = 1µm	
1 = 2µm	
2 = 5µm	
3 = 10µm	
$5 = 50 \mu m$	
6 = 0.0001"	
7 = 0.001"	
8 = 0.0005"	uoncy
	uency
Quadrature Freq	
0 = 800 kHz	
0 = 800 kHz 1 = 400 kHz	
0 = 800 kHz 1 = 400 kHz 2 = 200 kHz	xxxx = length in mm
0 = 800 kHz 1 = 400 kHz 2 = 200 kHz 6 = 10 kHz	xxxx = length in mm (see chart on page 1)
0 = 800 kHz 1 = 400 kHz 2 = 200 kHz 6 = 10 kHz Supply Voltage	xxxx = length in mm (see chart on page 1)
0 = 800 kHz 1 = 400 kHz 2 = 200 kHz 6 = 10 kHz	-

Electronics Section 2

Ordering Code

Resolution

Non-linearity

1, 5, 10, 20 or 40µm (see ordering code below) ±30µm or ±2LSBs, whichever is greater

S

±1 digit

 \leq 1 digit

2KHz

(6µm + 5ppm xL)/°C

100, 200, 400, 500, 1000 kHz

24 or 25 bits (binary or gray code)

10-30 Vdc

 \leq 80mA

Standard RS-485/422 levels

Pulse sequence

Lout of

hysteresis) Hysteresis Sampling rate

Repeatablity (resolution +

Temperature coefficient * Communication speeds Output modes

Operating voltage Operating current Output

Notes:

SSI Maximum cable lengthsCable lengthClock Freq.<25 m</td><1000 kHz</td>

<50 m	<500 kHz
<100 m	<400 kHz
<200 m	<500 kHz <400 kHz <200 kHz <100 kHz
<400 m	<100 kHz

	/range/ MSB / / LSB /
	BTL5-S1Mxxxx-Z
-	I [
	Connection Type
	S 32 = Connector
	KA02 = 2m PUR cable
	KA05 = 5m PUR cable
	KA10 = 10m PUR cable
	KA15 = 15m PUR cable
	L System Resolution
	1 = 1µm
	2 = 5µm
	3 = 10µm
	4 = 20µm
	$5 = 40 \mu m$
L	– Coding
	0 = Binary code, rising (24 bits)
	1 = Gray code, rising (24 bits)
	6 = Binary code, rising (25 bits)
	7 = Gray code, rising (25 bits)
	Stroke Length
	xxxx = length in mm
	(see chart on page 18)

Accessories Connectors

Product Type	Straight Connector 8-pin female	Right-angle Connector 8-pin female	Jam nut 3/4"-16 UNF
Or a mark			10.5
Ordering Code	BKS-S 32M	BKS-S 33M	BTL-5-JAM-NUT
Material	CuZn, nickel plated	CuZn, nickel plated	Stainless steel
Contact surface Solder connection	0.8µm Au -	0.8µm Au 	

Cable Cable diameter Cable material Environmental rating

> Indicate cable length in ordering code (consult factory for longer lengths) 00 = connector only02 = 2 meter cable 05 = 5 meter cable

7 x 0.25mm2/AWG 24

6...8mm

PVC (PUR optional)

IP67 (when installed)

Replaceable Electronics Module (REMs)

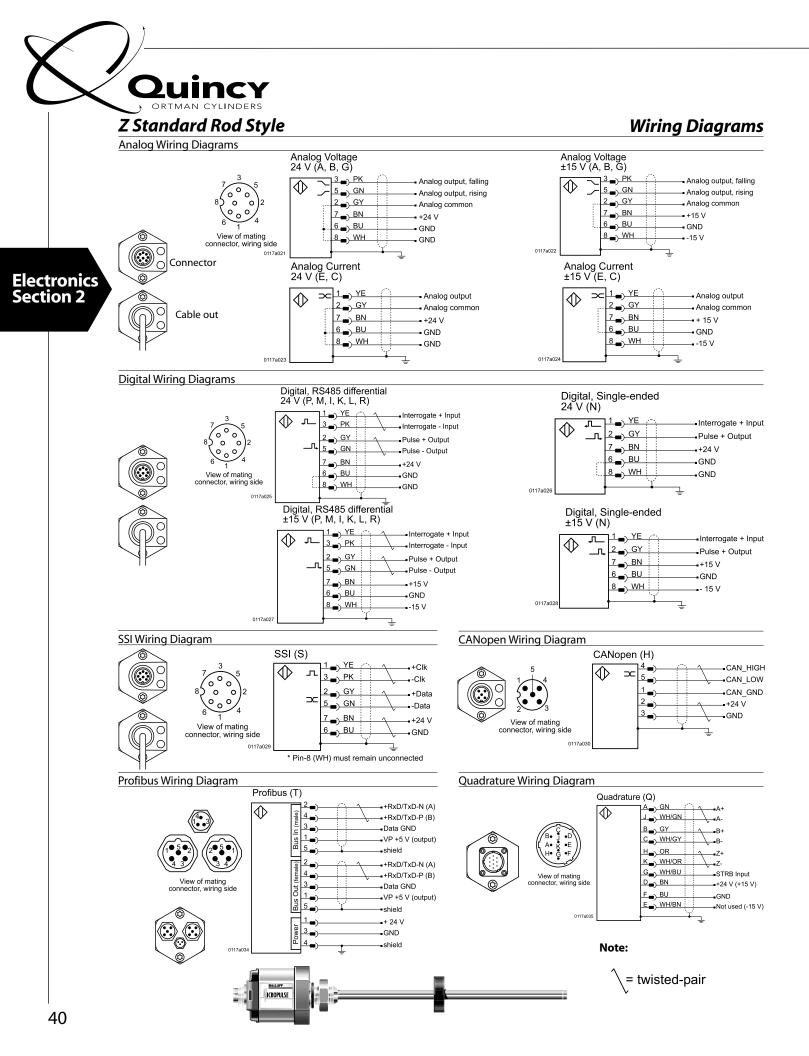
In many applications, avoiding equipment downtime is paramount. With that in mind, Balluff designed the Micropulse rod-style Z housing with a field replaceable electronics module.

This unique feature allows the entire electronics package to be replaced in the field in a matter of minutes. The plug-and-play benefits of Balluff's patented Auto-Tuning circuitry allow one REM module to be used for any stroke length. Of particular importance in hydraulic cylinder applications, the "rod" portion of the transducer stays in place - the fluid circuit remains intact.

Replacement Electronics modules are available for the following output types:

- Analog Voltage, Analog Current
- Digital START/STOP
- Digital PWM

BTL-5-A11-Mxxxx-REM-S32


Output Signal (see ordering code on page 18)

7 x 0.25mm2/AWG 24

6...8mm PVC (PUR optional)

IP67 (when installed)

Connection Type S 32 = Connector version KA05 = Cable out (specify length)

	1	2	3	4	5	6	7	8	9	1	01	1	12	13	14	15	5 10	6 1	7 1	8 1	9 2	20	21	22	23	24
	В	Т	L	-	5	-	A	1	1		_		0	3	0							3	2	-	E	4
			<u> </u>	-	T	I	┯	+	+	-	<u> </u>	-	!			<u> </u>	-	 	_	F	(A	0	5	Т	
Balluff - Linear Transducer																				=	_					
Generation 5																										
Output Type $A = 0$ to 10VdcI = Differential st $B = -5$ to $+5Vdc$ K = Differential st $C = 0$ to 20 mAL = Differential st $E = 4$ to 20 mAM=Differential st $G = -10$ to $+10$ VdcN = Single ended $S = SSI^*$ P = Differential st $T = Profibus^*$ R = Differential p $H = CANopen^*$ O = Quadrature*	top - oulse tart/ d star tart/	· lead -wid stop rt/sto stop	ding thr - le op - - tr	y ed nod adir lead ailin	ge a ulat ng e ding g e	activ ted edge g ed dge	e ac ge act	activ	/e																	
Supply Voltage 5 = 10-30 Vdc																										
Analog Output Operation (blank for Voltage type (Output type A, B & G) 1 = User selectable rising or falling Current type (Output type C & E) 0 = Minimum output at connector end 7 = Maximum output at connector end	d (ris	ing 1	owa																							
Normal Stroke Length																										
0 3 0 5 = 305mm active stroke	e																									
Housing Type Z = Standard Rod Style (3/4"x16-UNF i B = Metric Rod Style (M18x1.5 mounti										ll zo	one)														
Connection Type																										
S 3 2 = 8-pin quick disconnect r	neta	l cor	nneo	ctor																						
K A 0 5 = Cable out (5m stand	ard;	spec	ify l	eng	th i	n m	ete	rs)																		
Interrogation (only valid if output typ	- 90	R of	hor	wise	ما د		hlar	nk)																		

I = 1 circulation, 2 = 2 circulations, 4 = 4 circulations, 8 = 8 circulations, 16 = 16 circulations

Standard Stroke Lengths (consult factory for additional lengths)

inches	mm	inches mm	inches mm	inches mm	inches mm
2	0051	10 0254	24 0610	50 1270	98 2490
3	0077	11 0280	26 0661	54 1372	108 2743
3.5	0090	12 0305	28 0711	60 1524	118 2997
4	0102	13 0330	30 0762	66 1676	126 3200
5	0127	15 0381	32 0813	69 1753	140 3556
6	0152	16 0407	36 0914	72 1829	144 3658
7	0178	18 0457	40 1016	78 1981	148 3759
8	0203	20 0508	42 1067	84 2134	152 3860
9	0230	22 0560	48 1220	89 2261	156 3962

ICROPULSE

Linear Transducers

Electronics Section 2

W Compact Rugged Rod Style Thread-In

Compact, rugged and built to last, the all stainless steel "W" housing can withstand the rigors of harsh, real-world applications. With its compact size and "built like a tank" ruggedness, the "W" housing is the logical choice for demanding applications.

Features:

- Rugged all stainless steel housing
- Designed for demanding applications
- Eliminates need for
- protective covers
- Pressure rated 8700 psi
- ³/₄"x16- UNF threads
- Outputs
 - Analog (voltage or current)
 - Digital start/stop
 - Pulse with Modulates (PWM)
 - PWM with recirculations
 - SSI
- Length 2" to 156"
- Quick disconnect and cable out

Mobile

Mining

Applications:

Valve Control

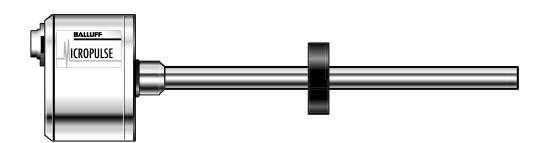
Primary/Wood

Food Processing

Hydraulic Cylinder

- Off-shore
- Waste water
- Pulp and paper

ICROPULSE


Dimensions General Specifications

W Compact, Threaded Rod Style

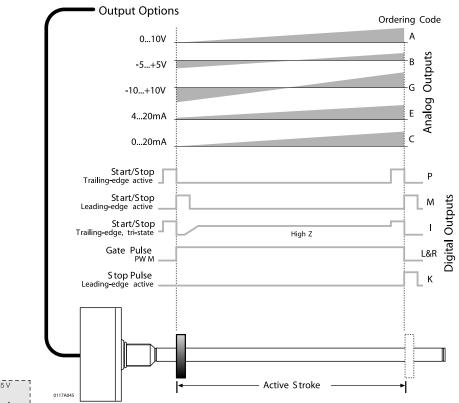
Warning:

These products are not rated for safety applications.

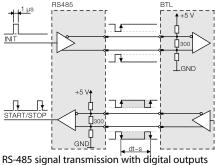
W Compact, Threaded Rod Style

Electrical Options

Electrical interface	Analog	Analog	Digital
Electrical type	Voltage	Current	Start/Stop & PWM
Part No. Code	A, B, G	E,C	P, M, I, L, K
Output	0+10V,-5+5V,-10+10V	020 mA, 420 mA	Start/Stop or Pulse-width- modulated (RS422/RS485)
Output load	>2KΩ (5 mA max)	≤500Ω	per spec
Resolution	≤0.1mV	≤0.2µA	Controller dependent
Non-linearity	±100μm to 500mm stroke,	±100µm to 500mm stroke,	±100µm to 500mm stroke,
	±0.02 % over 500mm stroke	±0.02 % over 500mm stroke	±0.02 % over 500mm stroke
Repeatability	Resolution/ min 2µm	Resolution/ min 2µm	Resolution/ min 2µm
Hysteresis	4μm	4µm	4μm
Sampling rate	500 Hz stroke >2000mm 1KHz stroke <2000mm	500 Hz stroke >2000mm 1KHz stroke <2000mm	500 Hz stroke >2000mm 1KHz stroke <2000mm
Temperature coefficient*	[150 μV/° C + (5ppm/°C*P*V/NL)] * DT	[0.6μΑ/°C + (10 ppm/°C*P*V/NL)] * DT	(6 μm + 5 ppm*NL) / °C
Operating voltage	10-30 Vdc	10-30 Vdc	10-30 Vdc
Operating current	<150mA	(at 1K Hz sampling rate)	<150mA
	(at 1K Hz sampling rate)		(at 1K Hz sampling rate)


Notes:

Electronics Section 2


> Analog voltage output versions incorporate both rising and falling outputs. Analog current version must be ordered as rising or falling outputs.

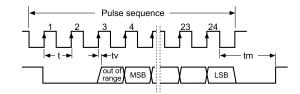
*Temperature coefficient variables:

- **V** = output range in V
- I = output range in [mA]
- $\Delta \mathbf{T}$ = temperature change
- **P** = magnet position
- **NL** = stroke length

Analog and Digital Output Options for the Micropulse W Style

Specialized Interfaces

W Compact, Threaded Rod Style


SSI

The SSI (synchronous serial interface) output interfaces with popular control systems from manufacturers such as Allen-Bradley, Siemens, Parker and many others. Cable spans can be up to 400m with noise free operation. The internal linearization of this interface make it ideal for applications requiring the best accuracy available.

Ordering Code	S
Resolution	1, 5, 10, 20 or 40μm
Non-linearity	±30µm or ±2LSBs, whichever is greater
Repeatablity (resolution +	±1 digit
hysteresis)	-
Hysteresis	≤1 digit
Sampling rate	500µS
Temperature coefficient *	(6µm + 5ppm xL)/°С
Communication speeds	100, 200, 400, 500, 1000 kHz
Output modes	24 or 25 bits, binary or gray code
Operating voltage	10-30 Vdc
Operating current	≤80mA
Output	Standard RS-485/422 levels

Notes:

SSI Maximum	cable lengths
Cable length	Clock Freq.
<25 m	<1000 kHz
<50 m	<500 kHz
<100 m	<400 kHz
<200 m	<200 kHz
<400 m	<100 kHz

	BTL5-S1Mxxxx-W
	Connection Type
	S 32 = Connector
	KA02 = 2m PUR cable
	KA05 = 5m PUR cable
	KA10 = 10m PUR cable
	KA15 = 15m PUR cable
_ '	System Resolution
	1 = 1µm
	2 = 5µm
	3 = 10µm
	4 = 20μm
	5 = 40µm
L	- Coding
	0 = Binary code, rising (24 bits)
	1 = Gray code, rising (24 bits)
	6 = Binary code, rising (25 bits)
	7 = Gray code, rising (25 bits)
	Stroke Length
	xxxx = length in mm
	(see chart on page 28)

C	Ordering Code		1 2 B T	2 3 4 L -	56 5-	7 8 A 1		0 11 - M	12 13 0 3	14 15 0 5	16 17		 1 22 2 -	23 E
						\top \top						К А		1
	Balluff - Linear Tran	sducer												
	Generation 5													
	Output Type													
tronics ion 2	B = -5 to +5 Vdc C = 0 to 20 mA E = 4 to 20 mA G = -10 to +10 Vdc S = SSI*	I = Differentia K = Differentia L = Differentia M=Differentia N = Single enc P = Differentia R = Differentia	al stop - al pulse al start/s ded star al start/s	leading -width m stop - lea t/stop - stop - tra	edge ac odulate oding ed eading e illing ed	tive d ge acti edge ac ge activ	ctive							
	Current type(Output 0 = Minimum output 7 = Maximum output	at connector e												
	0 = Minimum output 7 = Maximum output Normal Stroke Leng 0 3 0 5 = 305mr Housing Type —	at connector e at connector h n active stroke	end (fal	ling tow	ards opp	oosite e	end)							
	0 = Minimum output 7 = Maximum output Normal Stroke Leng 0 3 0 5 = 305mr	at connector e at connector e of th m active stroke	end (fal	ling tow	ards opp	null po	end)							
	0 = Minimum output 7 = Maximum output Normal Stroke Leng 0 3 0 5 = 305mr Housing Type W= Compact, threade H= Compact, threade Connection Type	at connector e at connector th m active stroke ed rod style, ³ /4 d rod style, M1	end (fal e "-16 UN 18x1.5 t	ling tow	s, 2 inch	null po	end)							
	0 = Minimum output 7 = Maximum output Normal Stroke Leng 0 3 0 5 = 305mr Housing Type W= Compact, threade H= Compact, threade Connection Type 5 3 2 = 8-pin quic	at connector e at connector th m active stroke ed rod style, ³ /4 d rod style, M1	end (fal e "-16 UN 18x1.5 t metal co	IF threac hreads, a	s, 2 inch 0mm nu	null poin	end) pint t							
	0 = Minimum output 7 = Maximum output Normal Stroke Leng 0 3 0 5 = 305mr Housing Type W= Compact, threade H= Compact, threade Connection Type S 3 2 = 8-pin quic K A 0 5 = Axial	at connector of at connector th m active stroke ed rod style, ³ /4 d rod style, M1 ck disconnect r cable out (5m	end (fal e ."-16 UN 18x1.5 t metal co standa	IF threac hreads, a ponnector rd; specif	s, 2 inch 0mm nu	null poin	end) pint t							
	0 = Minimum output 7 = Maximum output 7 = Maximum output Normal Stroke Leng 0 3 0 5 = 305mr Housing Type W= Compact, threade H= Compact, threade H= Compact, threade Connection Type S 3 2 = 8-pin quic K A 0 5 = Axial K 0 5 = Radial cat	at connector e at connector th m active stroke ed rod style, ³ /4 d rod style, M1 ck disconnect r cable out (5m sta	end (fal e "-16 UN 18x1.5 t metal co standa andard;	IF threac hreads, a onnecto rd; specify I	s, 2 inch 0mm nu y length ength in	null poin in meters	end) pint t ters) s)							
	0 = Minimum output 7 = Maximum output Normal Stroke Leng 0 3 0 5 = 305mr Housing Type W= Compact, threade H= Compact, threade Connection Type S 3 2 = 8-pin quic K A 0 5 = Axial	at connector e at connector at connector th m active stroke ed rod style, ³ /4 d rod style, M1 ck disconnect r cable out (5m sta ple out (5m sta valid if output	end (fal e "-16 UN 18x1.5 t metal co standa andard; type= R	IF threac hreads, a onnector rd; specify I specify I	s, 2 inch 0mm nu y length ength in ise leave	null poin in meters	end) pint t ters) s)							
	0 = Minimum output 7 = Maximum output 7 = Maximum output Normal Stroke Leng 0 3 0 5 = 305mr Housing Type W= Compact, threade H= Compact, threade K A 0 5 = 8-pin quic K A 0 5 = Axial K 0 5 = Radial cat Interrogation (only v I = Internal interrogat	at connector of at connector of at connector of th m active stroke ed rod style, ³ /4 d rod style, M1 ck disconnect r cable out (5m cable out (5m))	end (fal e "-16 UN 18x1.5 t metal co andard; type= R nal inter type= R	IF threac hreads, 3 onnector rd; specify I specify I specify I sotherw rogation , otherw	s, 2 inch 0mm nu y length ingth in ise leave	null poin in meters blank	end) Dint t ters) s) 							
	0 = Minimum output 7 = Maximum output 7 = Maximum output Normal Stroke Leng 0 3 0 5 = 305mr Housing Type W= Compact, threade H= Compact, threade H= Compact, threade K 0 5 = 8-pin quict K 0 5 = Radial cat Interrogation (only v I = Internal interrogat Recirculation (only v 1=1 circulation, 2 = 2	at connector e at connector at connector at connector m active stroke ed rod style, 3/4 d rod style, M1 ck disconnect r cable out (5m sta valid if output t cion, E = Extern valid if output t circulations, 4	end (fal e "-16 UN 18x1.5 t metal co standard; type= R nal inter type= R = 4 circ	IF threads, 3 IF threads, 3 onnector rd; specify I 8, otherw rogation , otherw culations	s, 2 inch omm nu y length ingth in ise leave 8 = 8 ciu	null poin null poin in meters blank blank) culatic	end) Dint t ters) s) 	= 16 c	irculati	ons				
	0 = Minimum output 7 = Maximum output 7 = Maximum output Normal Stroke Leng 0 3 0 5 = 305mr Housing Type W= Compact, threade H= Compact, threade H= Compact, threade K A 0 5 = 8-pin quic K A 0 5 = Axial K 0 5 = Radial cast Interrogation (only v I = Internal interrogat Recirculation (only v 1=1 circulation, 2 = 2 Standard Stroke Lengt inches mm	at connector of at connector of at connector th m active stroke ed rod style, ³ /4 d rod style, M1 ck disconnect r cable out (5m sta valid if output t circulations, 4 circulations, 4 <u>inches</u>	end (fal e "-16 UN 18x1.5 t metal co standa andard; type= R nal inter type= R = 4 circ ctory fo mm	IF threads, 3 IF threads, 3 onnector rd; specify I 8, otherw rogation , otherw culations	se leave 8 = 8 cin nal lengi inches	null poin null poin in meters blank blank) culatic ths) mm	end) pint t ters) s) pns, 16		irculati	ons		inches	mm	
	0 = Minimum output 7 = Maximum output 7 = Maximum output Normal Stroke Leng 0 3 0 5 = 305mr Housing Type W= Compact, threade H= Compact, threade H= Compact, threade K 0 5 = 8-pin quict K 0 5 = Radial cat Interrogation (only v I = Internal interrogat Recirculation (only v 1=1 circulation, 2 = 2 Standard Stroke Lengt inches mm 2 0051	at connector e at connector of at connector of th	end (fal e "-16 UN 18x1.5 t metal co standa andard; type= R type= R cal inter type= R c = 4 circ ctory fo mm 0254	IF threads, 3 IF threads, 3 onnector rd; specify I 8, otherw rogation , otherw culations	se leave 8 = 8 cin nal lengy 24	null poin null poin in meters blank culatic ths) <u>mm</u> 0610	end) pint t ters) s) pns, 16	i	nches 50	mm 1270		98	2490	
	0 = Minimum output 7 = Maximum output 7 = Maximum output Normal Stroke Leng 0 3 0 5 = 305mr Housing Type W= Compact, threade H= Compact, thread	at connector e at connector of at connector of th	end (fal e "-16 UN 18x1.5 t metal co standard; type= R type= R cal inter type= R c = 4 circ ctory fo <u>mm</u> 0254 0280	IF threads, 3 IF threads, 3 onnector rd; specify I 8, otherw rogation , otherw culations	s, 2 inch 0mm nu 0mm nu ise leave 8 = 8 cin nal leng inches 24 26	null poin null poin in meters blank blank) cculatic ths) <u>mm</u> 0610 0661	end) pint t ters) s) pns, 16	<u>i</u>	nches 50 54	mm 1270 1372	<u>)</u>	<u>98</u> 108	2490 2743	
	0 = Minimum output 7 = Maximum output 7 = Maximum output Normal Stroke Leng 0 3 0 5 = 305mr Housing Type W= Compact, threade H= Compact, threade H= Compact, threade H= Compact, threade K 0 5 = 8-pin quic K 0 5 = Radial cast Interrogation (only v I = Internal interrogat Recirculation (only v 1=1 circulation, 2 = 2 Standard Stroke Lengt inches mm 2 0051 3 0077 3.5 0090	at connector e at connector of at connector of th	end (fal e "-16 UN 18x1.5 t metal co standard; type= R type= R cal inter type= R c = 4 circ ctory fo <u>mm</u> 0254 0280 0305	IF threads, 3 IF threads, 3 onnector rd; specify I 8, otherw rogation , otherw culations	s, 2 inch 0mm nu 0mm nu ise leave 8 = 8 cin nal leng inches 24 26 28	null poin null poin in meters blank) culatic ths) <u>mm</u> 0610 0661 0711	end) pint t ters) s) pns, 16	i	nches 50 54 60	mm 1270 1372 1524	2	98 108 118	2490 2743 2997	
	0 = Minimum output 7 = Maximum output 7 = Maximum output Normal Stroke Leng 0 3 0 5 = 305mr Housing Type W= Compact, threade H= Compact, thread	at connector e at connector of at connector of th	end (fal e "-16 UN 18x1.5 t metal co standard; type= R type= R cal inter type= R c = 4 circ ctory fo <u>mm</u> 0254 0280	IF threads, 3 IF threads, 3 onnector rd; specify I 8, otherw rogation , otherw culations	s, 2 inch 0mm nu 0mm nu ise leave 8 = 8 cin nal leng inches 24 26	null poin null poin in meters blank blank) cculatic ths) <u>mm</u> 0610 0661	end) pint t ters) s) pns, 16 	i	nches 50 54 60 66	mm 1270 1372 1524 1676	2 	<u>98</u> 108	2490 2743	
	0 = Minimum output 7 = Maximum output 7 = Maximum output Normal Stroke Leng 0 3 0 5 = $305mr$ Housing Type W= Compact, threade H= Compact, threade K A 0 5 = 8 -pin quic K 0 5 = 8 -	at connector of at connector of at connector of the mactive stroke ed rod style, $\frac{3}{4}$ d rod style, $\frac{3}{4}$	end (fal e "-16 UN 18x1.5 t metal co andard; type= R aal inter type= R = 4 circ ctory fo mm 0254 0280 0305 0300 0381 0407	IF threads, 3 IF threads, 3 onnector rd; specify I 8, otherw rogation , otherw culations	s, 2 inch 0mm nu 9 length ength in ise leave 8 = 8 ciu nal leng inches 24 26 28 30 32 36	null poin in meters blank) culation ths) <u>mm</u> 0610 0661 0711 0762 0813 0914	end) pint t ters) s) pons, 16 p _	i	nches 50 54 60	mm 1270 1372 1524	2 	98 108 118 126 140 144	 2490 2743 2997 3200 3556 3658	
	0 = Minimum output 7 = Maximum output 7 = Maximum output Normal Stroke Leng 0 3 0 5 = 305mr Housing Type W= Compact, threade H= Compact, thread	at connector of at connector of at connector of the mactive stroke ed rod style, $\frac{3}{4}$ d rod style, $\frac{3}{4}$	end (fal e "-16 UN 18x1.5 t metal co standar andard; type= R al inter type= R = 4 circ ctory fo <u>mm</u> 0254 0280 0305 0330 0381	IF threads, 3 IF threads, 3 onnector rd; specify I 8, otherw rogation , otherw culations	s, 2 inch 0mm nu 9 length ength in ise leave 8 = 8 cin nal leng <u>inches</u> 24 26 28 30 32	null poin null poin in meters blank culatic ths) <u>mm</u> 0610 0661 0711 0762 0813	end) pint t ters) s) pns, 16 p 2 3 5		nches 50 54 60 66 69	mm 1270 1372 1524 1676 1753	2 	98 108 118 126 140	2490 2743 2997 3200 3556	

ICROPULSE Linear Transducers

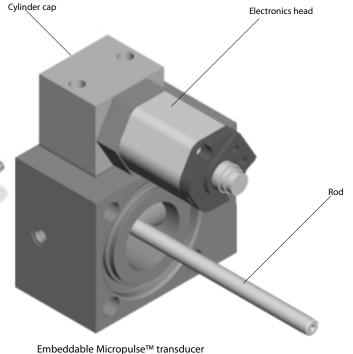
Embeddable Rod Style

The unique "E" housing offers the ability to mount the electronics away from the pressure tube. This allows the electronics to be placed in a safe,

out-of-the way area where space is an issue. This remote mounting feature facilitates easy access to the electronics without

removing the pressure tube from the cylinder.

Applications:

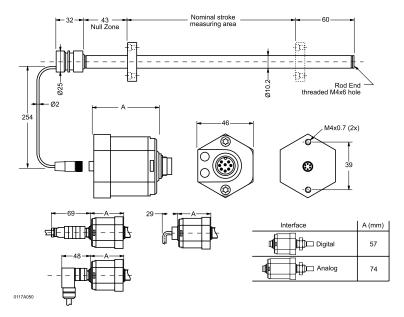

- Hydraulic cylinder
- Presses
- Mobile

Features:

- Space saving embeddable design
- Designed for use in hydraulic cylinders
- Field replaceable electronics module
- Analog, digital and SSI outputs
- 2" to 156"

mbeddable Micropulse™ transduce installed in a cylinder cap

Ordering Code, Head

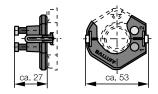

Ordering Code, Rod

Dimensions General Specifications

E Embeddable Rod Style

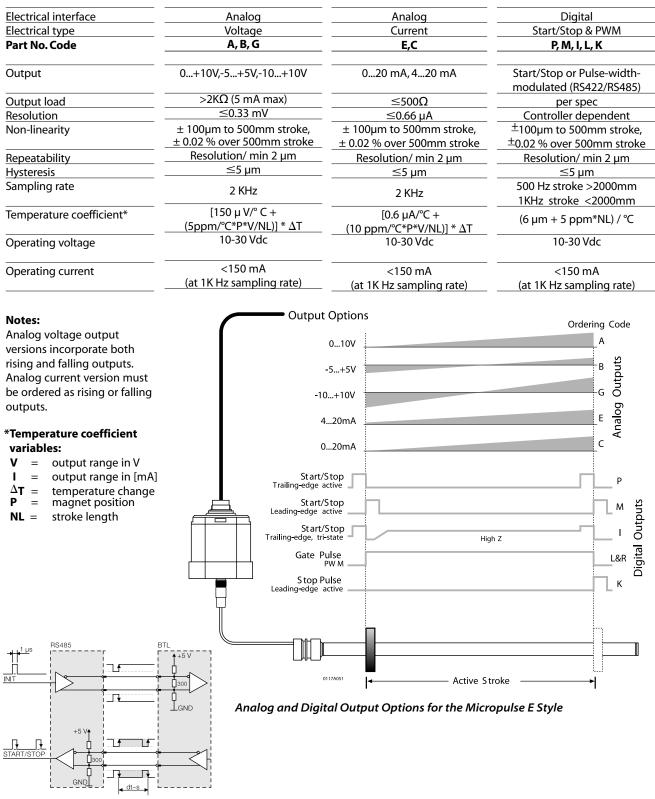
Series	E Style
Available lengths	51mm (2 in) to 3962mm (156 in)
Output signals	Analog & Digital Pulse

Electronics Section 2


BTL-5-____-E1-A-S32/KA05 (Electronics Head--see page 53) BTL-5-000-M____-E1-A254 (Rod--see page 53)

Measurement type	Linear displacement
Measurement range	51mm (2 in) to 3962mm (156 in)
Shock rating	100g for 6ms (100g for 2ms continuous) per IEC 68 2-27
Vibration rating	12g, 10 to 2000 Hz per IEC 68-2-6
Environmental protection	IP 67 (when BKS-S32/33 is installed)
Housing material (pressure tube)	316 stainless steel
Housing material (electronics head)	anodized aluminum/314L stainless steel
Pressure rating (rod)	400 bar (5800 PSI) max
Operating temperature	-40 to + 185° F
Storage temperature	-40 to + 212° F
Humidity	<90% non-condensing
Connection type	connector or integral cable
Noise immunity	ESD, RFI and BURST per IEC 1000-4-2/3/4/6, severity level 3
Approvals	CE

Warning:


These products are not rated for safety applications.

Calibration device BTL-5-A-EH01

E Embeddable Rod Style

Electrical Options

RS-485 signal transmission with digital outputs

		ERS												
Ordering Coc	le			1 2	2 4	5 6 7		10	11 12	12 14	15 16	17	1011	1
Electronics H	lead	-	(int)	1 2 B T		5 6 7 5 - A			E 1			3	2 -	
Balluff - Linear Tr	ansdu	cer 🥱	8			\top		_		-	К	A	0 5	
Generation 5														
Output Type						-								
A = 0 to $10Vdc$	I	=Different	ial start/st	op with tri-s	tate									
B = -5 to $+5Vdc$				eading edge										
C = 0 to 20 mA				vidth modul										
E = 4 to 20 mA				op - leading										
G = -10 to +10 Vde				stop - leadi										
				op - trailing vidth - recirc		lve								
Supply Voltage	Г	-Dinereni	lai puise-w	nutii - recirc	ulateu									
5 = 10-30 Vdc														
Analog Output O	perati	on (blank f	or digital)											
Voltage type (A, B														
Current type (C &														
	7	7 = Maximu	m output a	at connector	r									
Embeddable														
Connection Type														
Connection Type $\boxed{S \ 3 \ 2} = 8-p$		k disconned	t metal co	onnector										
S 3 2 = 8-p	in quic				th in mo	torc)								
	in quic				th in me	ters)								
S 3 2 = 8-p K A 0 5 = Interrogation (on	in quic Integra Iy valic	al cable (5m d if output t	standard; ype= R, oth	specify leng nerwise leav										
S 3 2 = 8-p K A 0 5 = Interrogation (on I = Internal interro	in quic Integra Iy valic gation,	al cable (5m l if output t , E = Externa	standard; ype= R, oth al interroga	specify leng nerwise leav ation	e blank)]	
S 3 2 = 8-p K A 0 5 = Interrogation (on I = Internal interro Recirculation (on	in quic Integra Iy valic gation, Iy valid	al cable (5m l if output t , E = Externa if output ty	standard; ype= R, oth al interroga ype= R, oth	specify leng nerwise leav ation nerwise leave	e blank) e blank)									
S 3 2 = 8-p K A 0 5 = Interrogation (on I = Internal interro	in quic Integra Iy valic gation, Iy valid	al cable (5m l if output t , E = Externa if output ty	standard; ype= R, oth al interroga ype= R, oth	specify leng nerwise leav ation nerwise leave	e blank) e blank)									
S 3 2 = 8-p K A 0 5 = Interrogation (on I = Internal interro Recirculation (on	in quic Integra Iy valic gation, Iy valid	l cable (5m l if output t , E = Externa if output ty	standard; ype= R, oth al interroga ype= R, oth	specify leng nerwise leav ation nerwise leave	e blank) e blank)									
S 3 2 = 8-p K A 0 5 = Interrogation (on I = Internal interro Recirculation (on	in quic Integra Iy valic gation, Iy valid	l cable (5m l if output t , E = Externa if output ty	standard; ype= R, oth al interroga ype= R, oth	specify leng nerwise leav ation nerwise leave	e blank) e blank) irculatior	 ns, 16 = 16	6 circula	itions			6 17 18	8 19	0 20 2	1
S 3 2 = 8-p K A 0 5 = Interrogation (on I = Internal interro Recirculation (on	in quic Integra Iy valic gation, Iy valid	l cable (5m l if output t , E = Externa if output ty	standard; ype= R, oth al interroga ype= R, oth	specify leng nerwise leav ation nerwise leav ions, 8 = 8 c	e blank) e blank) irculatior	 ns, 16 = 16	6 circula 9 10 1	itions		4 15 1	6 17 18 - E 1		20 2 A 2	
S 3 2 = 8-p K A 0 5 = Interrogation (on I = Internal interro Recirculation (on 1=1 circulation, 2 = Rod	in quic Integra Ily valid gation, ly valid = 2 circ	al cable (5m d if output t , E = Externa if output ty culations, 4 =	standard; ype= R, oth al interroga ype= R, oth = 4 circulat	specify leng nerwise leav ation nerwise leav ions, 8 = 8 c	e blank) e blank) irculatior 5 6	ns, 16 = 16	6 circula 9 10 1	ntions	13 14	4 15 1				
S 3 2 = 8-p K A 0 5 = Interrogation (on I = Internal interro Recirculation (on 1=1 circulation, 2 =	in quic Integra Ily valid gation, ly valid = 2 circ	al cable (5m d if output t , E = Externa if output ty culations, 4 =	standard; ype= R, oth al interroga ype= R, oth = 4 circulat	specify leng nerwise leav ation nerwise leav ions, 8 = 8 c	e blank) e blank) irculatior 5 6	ns, 16 = 16	6 circula 9 10 1	ntions	13 14	4 15 1				
S 3 2 = 8-p K A 0 5 = Interrogation (on I = Internal interro Recirculation (on 1=1 circulation, 2 = Rod Balluff - Linear Tr	in quic Integra Ily valid gation, Ily valid = 2 circ ansdu	al cable (5m d if output t , E = Externa if output ty culations, 4 =	standard; ype= R, oth al interroga ype= R, oth = 4 circulat	specify leng nerwise leav ation nerwise leav tions, 8 = 8 c 2 3 4 3 T L -	e blank) e blank) irculatior 5 6	ns, 16 = 16	6 circula 9 10 1	ntions	13 14	4 15 1				
S 3 2 = 8-p K A 0 5 = Interrogation (on I = Internal interro Recirculation (on 1=1 circulation, 2 = Rod Balluff - Linear Tr Generation 5	in quic Integra Ily valid gation, Ily valid = 2 circ	al cable (5m d if output t , E = Externa d if output ty sulations, 4 =	standard; ype= R, oth al interroga ype= R, oth = 4 circulat	specify leng nerwise leav ation nerwise leav tions, 8 = 8 c 2 3 4 3 T L -	e blank) e blank) irculatior 5 6	ns, 16 = 16	6 circula 9 10 1	ntions	13 14	4 15 1				
S 3 2 = 8-p K A 0 5 = Interrogation (on I = Internal interro Recirculation (on 1=1 circulation, 2 = Rod Balluff - Linear Tr	in quic Integra Ily valid gation, Ily valid = 2 circ	al cable (5m d if output t , E = Externa d if output ty sulations, 4 =	standard; ype= R, oth al interroga ype= R, oth = 4 circulat	specify leng nerwise leav ation nerwise leav tions, 8 = 8 c 2 3 4 3 T L -	e blank) e blank) irculatior 5 6	ns, 16 = 16	6 circula 9 10 1	ntions	13 14	4 15 1				
S 3 2 = 8-p K A 0 5 = Interrogation (on I = Internal interro Recirculation (on 1=1 circulation, 2 = Rod Balluff - Linear Tr Generation 5	in quic Integra Ily valic gation, Ily valid = 2 circ ransdu	al cable (5m d if output t , E = Externa l if output ty culations, 4 =	standard; ype= R, oth al interroga ype= R, oth = 4 circulat	specify leng herwise leav herwise leave ions, 8 = 8 c	e blank) e blank) irculation 5 6 5 -	7 8 9 0 0 0	6 circula 9 10 1 0 - <u>N</u>	ntions	13 14	4 15 1				
$\begin{bmatrix} S & 3 & 2 \\ \hline K & A & 0 & 5 \\ \hline K & A & 0 & 5 \\ \hline Interrogation (on I = Internal interro Recirculation (on 1=1 circulation, 2 = Internal interro Recirculation, 2 = Internal internal interro Recirculation, 2 = Internal intern$	in quic Integra Ily valid gation, ly valid = 2 circ ransdu ength 305mm	al cable (5m I if output to E = Externa if output ty culations, 4 =	standard; ype= R, oth al interroga ype= R, oth = 4 circulat 1 B ke (see tab	specify leng herwise leav ation herwise leave ions, $8 = 8 \text{ c}$ 2 3 4 5 T L -	e blank) e blank) irculation 5 6 5 -	7 8 9 0 0 0	6 circula 9 10 1 0 - N	ntions	13 14	4 15 1				
S 3 2 = 8-p K A 0 5 = Interrogation (on I = Internal interro Recirculation (on 1=1 circulation, 2 = Rod Balluff - Linear Tr Generation 5 Nominal Stroke Ia 0 3 0 5 = Embeddable	in quic Integra Ily valid gation, Ily valid = 2 circ ransdu ength 305mm	al cable (5m I if output to E = Externa if output ty culations, 4 =	standard; ype= R, oth al interroga ype= R, oth = 4 circulat 1 B ke (see tab	specify leng herwise leav herwise leave ions, 8 = 8 c	e blank) e blank) irculation 5 6 5 -	7 8 9 0 0 0	6 circula 9 10 1 0 - N	ntions	13 14	4 15 1				
S 3 2 = 8-p K A 0 5 = Interrogation (on I = Internal interro Recirculation (on 1=1 circulation, 2 = Rod Balluff - Linear Tr Generation 5 Nominal Stroke Ia 0 3 0 5 = Embeddable	in quic Integra Ily valid gation, Ily valid = 2 circ ransdu ength 305mm	al cable (5m I if output to E = Externa if output ty culations, 4 =	standard; ype= R, oth al interroga ype= R, oth = 4 circulat 1 B ke (see tab	specify leng herwise leav herwise leave tions, 8 = 8 c 2 3 4 3 T L -	e blank) e blank) irculation 5 6 5 -	7 8 9 0 0 0	6 circula 9 10 1 0 - N	ntions	13 14	4 15 1				
S 3 2 = 8-p K A 0 5 = Interrogation (on I = Internal interro Recirculation (on 1=1 circulation, 2 = Rod Balluff - Linear Tr Generation 5 Nominal Stroke Ia 0 3 0 5 = Embeddable Connector/Cable A254 = Push-lock	in quic Integra Ily valic gation, Ily valid = 2 circ ransdu ength 305mm connec	al cable (5m d if output t , E = Externa if output ty culations, 4 = cer n active stro	standard; ype= R, oth al interroga ype= R, oth = 4 circulat 1 B ke (see tab 4mm integ	specify leng herwise leav herwise leave ions, 8 = 8 c 2 3 4 3 T L -	e blank) irculation 56 5-	7 8 9 0 0 0	6 circula 9 10 1 0 - N	ntions	13 14	4 15 1				
S 3 2 = 8-p K A 0 5 = Interrogation (on I = Internal interro Recirculation (on 1=1 circulation, 2 = Rod Balluff - Linear Tr Generation 5 Nominal Stroke Id 0 3 0 5 = Embeddable Connector/Cable A254 = Push-lock Standard Stroke	in quic Integra Ily valic gation, Ily valid = 2 circ ransdu ength 305mm connec	al cable (5m d if output ty , E = External if output ty sulations, 4 = cer a active stro ctor with 25 ns (consult f	standard; ype= R, oth al interroga ype= R, oth = 4 circulat I B ke (see tab 4mm integ factory for	specify leng herwise leav ation herwise leave ions, 8 = 8 c 2 3 4 3 T L - 0	e blank) irculation 56 5-	ns, 16 = 16	6 circula 9 10 1 0 - N	1 12 1 0	13 14 3 0	4 15 1		-		
S 3 2 = 8-p K A 0 5 = Interrogation (on I = Internal interro Recirculation (on 1=1 circulation, 2 = Rod Balluff - Linear Tr Generation 5 Nominal Stroke Ia 0 3 0 5 = Embeddable Connector/Cable A254 = Push-lock Standard Stroke inches mm	in quic Integra Ily valic gation, Ily valid = 2 circ ransdu ength 305mm connec	al cable (5m d if output ty , E = External if output ty sulations, 4 = cer n active stro ctor with 25 ns (consult f inches	standard; ype= R, oth al interroga ype= R, oth = 4 circulat I B ke (see tab 4mm integ factory for mm	specify leng herwise leave herwise leave ions, 8 = 8 c 2 3 4 3 T L - ble of standa gral cable additional le	e blank) irculation 56 5- ard lengtl	ns, 16 = 16 7 8 9 0 0 0	6 circula 9 10 1 0 - N	ntions	13 14 3 0	4 15 1	E 1	-	The second secon	
S 3 2 = 8-p K A 0 5 = Interrogation (on 1 = Internal interro Recirculation (on 1=1 circulation, 2 = Rod Balluff - Linear Tr Generation 5 Nominal Stroke Ia 0 3 0 5 = Embeddable Connector/Cable A254 = Push-lock Standard Stroke inches mm 2 0051	in quic Integra Ily valic gation, Ily valid = 2 circ ransdu ength 305mm connec	al cable (5m d if output ty , E = External if output ty sulations, 4 = cer a active stro ctor with 25 ns (consult f	standard; ype= R, oth al interroga ype= R, oth = 4 circulat I B ke (see tab 4mm integ factory for mm 0254	specify leng herwise leav ation herwise leave ions, 8 = 8 c 2 3 4 3 T L - 0	e blank) irculation 56 5-	ns, 16 = 16 7 8 9 0 0 0	6 circula 9 10 1 0 - N	ntions	13 14 3 0	4 15 1		es		
S 3 2 = 8-p K A 0 5 = Interrogation (on 1 = Internal interro Recirculation (on 1=1 circulation, 2 = Rod Balluff - Linear Tr Generation 5 Nominal Stroke Ia 0 3 0 5 = Embeddable Connector/Cable A254 = Push-lock Standard Stroke inches mm 2 0051	in quic Integra Ily valic gation, Ily valid = 2 circ ransdu ength 305mm connec	al cable (5m d if output ty , E = External if output ty sulations, 4 = cer n active stro ctor with 25 ns (consult f <u>inches</u> 10	standard; ype= R, oth al interroga ype= R, oth = 4 circulat I B ke (see tab 4mm integ factory for mm	specify leng herwise leave herwise leave ions, 8 = 8 c 2 3 4 3 T L - ble of standa gral cable additional le 24	e blank) irculation 56 5- ard length	ns, 16 = 16 7 8 9 0 0 0	6 circula 9 10 1 0 - N	ntions	13 14 3 0	4 15 1	<u>E</u> 1	es_	mm 2490	
S32 $= 8-p$ KA05 $=$ Interrogation (on 1 = Internal interro Recirculation (on 1=1 circulation, 2 =RodBalluff - Linear Tr Generation 5Generation 5Nominal Stroke Ia0305=EmbeddableConnector/Cable A254 = Push-lockStandard Strokeinchesmm 220051 330077 3.53.50090 4	in quic Integra Ily valic gation, Ily valid = 2 circ ransdu ength 305mm connec	al cable (5m d if output ty , E = External if output ty sulations, 4 = cer n active stro ctor with 25 ns (consult f <u>inches</u> <u>10</u> <u>11</u> <u>12</u> <u>13</u>	standard; ype= R, oth al interroga ype= R, oth = 4 circulat I B ke (see tab 4mm integ factory for mm 0254 0280 0305 0330	specify leng herwise leave ation herwise leave ions, 8 = 8 c 2 3 4 3 T L - 3 T L - ble of standa gral cable additional leave 24 26 28 30	e blank) irculation 5 6 5 - 5 - ard lengtl engths) nes mr 06 06 07 07	ns, 16 = 16 7 8 9 0 0 0 ns below) nn 10 61 11 62	6 circula 9 10 1 0 - N 	1 12 M 0	13 14 3 0 	4 15 1	<u>inch</u> 98 108	es	Mm 2490 2743 2997 3200	
S32 $= 8-p$ KA05 $=$ Interrogation (on I = Internal interro Recirculation (on 1=1 circulation, 2 =RodBalluff - Linear Tr Generation 5Generation 5Nominal Stroke Ia0305=EmbeddableConnector/Cable A254 = Push-lockStandard Strokeinchesmm 220051 330077 3.53.50090 440102 550127	in quic Integra Ily valic gation, Ily valid = 2 circ ransdu ength 305mm connec	al cable (5m d if output t , E = External if output ty sulations, 4 = cer a active stro ctor with 25 ns (consult f <u>inches</u> <u>10</u> <u>11</u> <u>12</u> <u>13</u> <u>15</u>	standard; ype= R, oth al interroga ype= R, oth = 4 circulat I B ke (see tab 4mm integ factory for mm 0254 0280 0305 0330 0381	specify leng herwise leave tion herwise leave tions, 8 = 8 c 2 3 4 3 T L - ble of standa gral cable additional le 24 26 28 30 32	e blank) irculation 5 6 5 - 5 - ard lengtl engths) nes mr 06 06 07 07 07	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6 circula 9 10 1 0 - N 	nes	13 14 3 0 3 0 3 0 3 12 1270 1372 1524 1676 1753 1753	4 15 1	E 1 inch 98 108 118 126 140	es	Mm 2490 2743 2997 3200 3556	
S32 $= 8-p$ KA05 $=$ Interrogation (on I = Internal interro Recirculation (on 1=1 circulation, 2 =RodBalluff - Linear Tr Generation 5Generation 5Nominal Stroke Ia0305=EmbeddableConnector/Cable A254 = Push-lockStandard Strokeinchesmm 220051 330077 3.53.50090 440102 550127 660152	in quic Integra Ily valic gation, Ily valid = 2 circ ransdu ength 305mm connec	al cable (5m d if output t , E = External if output ty sulations, 4 = cer a active stro ctor with 25 ns (consult f inches 10 11 12 13 15 16	standard; ype= R, oth al interroga ype= R, oth = 4 circulat I B ke (see tab 4mm integ factory for mm 0254 0280 0305 0330 0381 0407	specify leng herwise leave ation herwise leave ions, 8 = 8 c 2 3 4 3 T L - ble of standa gral cable additional le 24 26 28 30 32 36	e blank) irculation 5 6 5 - 5 - ard lengtl engths) nes mr 06 06 07 07 07 08 09	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6 circula 9 10 1 0 - N 	nes	13 14 3 0 3 0 3 0 3 12 1270 1372 1524 1676 1753 1829	4 15 1	E 1 inch 98 108 118 126 140 144	es	Mm 2490 2743 2997 3200 3556 3658	
S32 $= 8-p$ KA05 $=$ Interrogation (on I = Internal interro Recirculation (on 1=1 circulation, 2 =RodBalluff - Linear Tr Generation 5Generation 5Nominal Stroke Ia0305=EmbeddableConnector/Cable A254 = Push-lockStandard Strokeinchesmm 220051 330077 3.53.50090 440102 550127	in quic Integra Ily valic gation, Ily valid = 2 circ ransdu ength 305mm connec	al cable (5m d if output t , E = External if output ty sulations, 4 = cer a active stro ctor with 25 ns (consult f <u>inches</u> <u>10</u> <u>11</u> <u>12</u> <u>13</u> <u>15</u>	standard; ype= R, oth al interroga ype= R, oth = 4 circulat I B ke (see tab 4mm integ factory for mm 0254 0280 0305 0330 0381	specify leng herwise leave tion herwise leave tions, 8 = 8 c 2 3 4 3 T L - ble of standa gral cable additional le 24 26 28 30 32	e blank) irculation 5 6 5 - 5 - ard lengtl engths) nes mr 06 06 07 07 07	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6 circula 9 10 1 0 - N 	nes	13 14 3 0 3 0 3 0 3 12 1270 1372 1524 1676 1753 1753	4 15 1	E 1 inch 98 108 118 126 140	es	Mm 2490 2743 2997 3200 3556	

ICROPULSE Linear Tranducers

R Low-Profile Style

The "R" housing provides two unique opportunities in the Magnetostrictive world of Position Feedback. The first is with its unique housing design; it is able to go where other products can't due to size. With its low profile design of rugged aluminum, it requires less space. The other unique opportunity is "BACKPACK FEEDBACK".

Applications:

- Pneumatic glides
- Plastic machines
- Presses
- Transport system
- Die casting
- Entertainment
- Flight simulators
- Tool handling
- Packaging
- Conveying
- Measurement
- Semiconduction

Features:

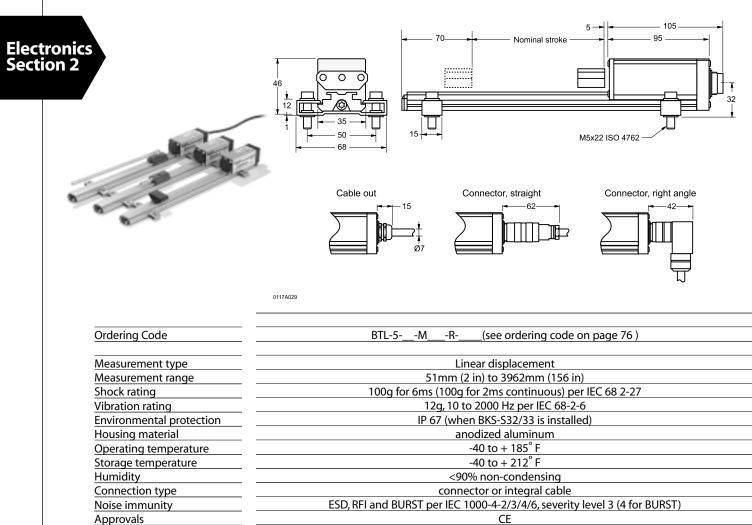
- Low profile for space critical applications
- Compatible with "rod in cylinder" type linear potentiometers
- Cable out or quick disconnect
- Length 2" 156"
- Floating or captive magnet
- Outputs Digital start/stop, pulse with modulated PWM, Analog, Voltage or Current
 IP67
- Backpack Feedback

BackPack Feedback:

Using the "R" style transducer, precision electronic feedback can now be accomplished without any modification, special machining, or mechanical coupling to the cylinder rod. For use with any non-ferrous cylinder tube, simply mount the "R" housing Micropulse™ transducer to the cylinder end caps. Magnetic fields developed by standard piston mounted magnets generate a position signal in the transducer. Testing required for approval.

- No internal modification to the cylinder is necessary, i.e. gun drilling of piston rod
- Wear free, noncontact, absolute positioning
- Low profile housing, ease of fit to cylinder
- No threat of air leakage as with internal position transducers
- Ease of replacement without de-pressurizing the cylinder

BACKPACK FEEDBACK



Dimensions General Specifications

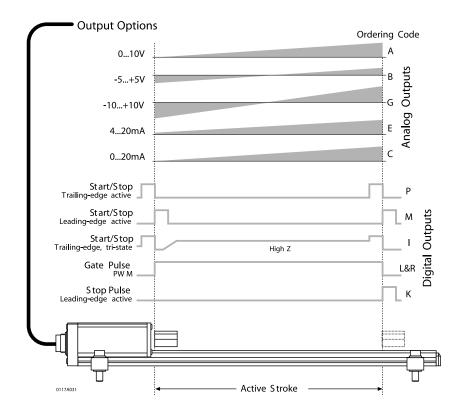
R Low Profile

Warning:

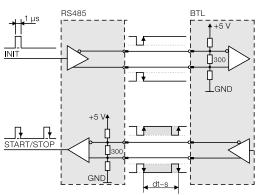
These products are not rated for safety applications.

R Low Profile

Electrical Options


Electrical interface	Analog	Analog	Digital
Electrical type	Voltage	Current	Start/Stop & PWM
Part No. Code	A, B, G	E,C	P, M, I, L, K
Output		0.20	Charles and Duda a suidtle
Output	0+10V,-5+5V,-10+10V	020 mA, 420 mA	Start/Stop or Pulse-width-
			modulated (RS422/RS485)
Output load	>2KΩ (5 mA max)	≤500Ω	per spec
Resolution	≤0.1mV	≤0.2µA	Controller dependent
Non-linearity	±100µm to 500mm stroke,	±100µm to 500mm stroke,	±100μm to 500mm stroke,
	<u>+0.02 % over 500mm stroke</u>	<u>±0.02 % over 500mm stroke</u>	<u>±0.02 % over 500mm stroke</u>
Repeatability	Resolution/ min 2µm	Resolution/ min 2µm	Resolution/ min 2µm
Hysteresis	5µm	5µm	5µm
Sampling rate	1KHz	1KHz	1KHz
Temperature coefficient*	[150µ V/° C +	[0.6µA/°C +	<u>(6 μm + 5 ppm*NL) / °C</u>
	(5ppm/°C*P*V/NL)] * DT	(10 ppm/°C*P*V/NL)] * ΔT	
Operating voltage	10-30 Vdc	10-30 Vdc	10-30 Vdc
Operating current	≤150mA	≤150mA	≤150mA

Notes:


Analog voltage output versions incorporate both rising and falling outputs. Analog current version must be ordered as rising or falling outputs.

*Temperature coefficient variables:

- output range in V V =
- = output range in [mA] Т
- temperature change magnet position $\Delta T =$
- Ρ =
- NL = stroke length

Analog and Digital Output Options for the Micropulse R Style

RS485 Transmission of digital signals

K.	Quincy	
		32
	Balluff - Linear Transducer	A 0
	Generation 5	
ectronics ction 2	Output Type A = 0 to 10Vdc I = Differential start/stop with tri-state B = -5 to +5Vdc K = Differential stop - leading edge active C = 0 to 20 mA L = Differential pulse-width modulated E = 4 to 20 mA M = Differential start/stop - leading edge active G = 10 to +10 Vdc P = Differential start/stop - trailing edge active S = SSI* T = Profibus* H = CANopen* Q = Quadrature*	
	Supply Voltage	
	(Leave Blank for Digital Versions) Voltage type (Output type A, B & G) 1 = User selectable rising or falling Current type (Output type C & E) 0 = Minimum output at connector end (rising towards opposite end) 7 = Maximum output at connector end (falling towards opposite end)	
	Normal Stroke Length	
	Housing Type R = Low Profile Housing Connection Type S 3 Z = 8-pin quick disconnect metal connector K A 0 5 = Cable out (5m standard; specify length in meters)	
	Standard Stroke Lengths (consult factory for additional lengths) Electrical Stroke	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	11 0280 36 0914 130 3302 12 0305 40 1016 142 3606 13 0330	