Technical Reference/Information

Appendix: - 1

Considerations when Switching from Air Cylinders	Appendix: Page-3
Technical Reference (Service Life and Moment)	Appendix: Page-5
Technical Reference (Calculating the Positioning Time)	Appendix: Page-7
Technical Reference (Non-standard products)	Appendix: Page- 9
Technical Reference (CE/UL/RoHS)	Appendix: Page-12
Information on Programming	Appendix: Page-16
Explanation of Terms	Appendix: Page-18

| Optional | Explanation of Actuator Options | Appendix: Page- 23 |
| :--- | :--- | :--- | :--- |
| Maintenance Table of Replacement Parts by Type | Appendix: Page- 39 | |
| Parts | Linear Servo Rod Type Mounting Methods | Appendix: Page- 45 |

Model Selection Reference	Model Selection Reference (Speed vs. Load Capacity)	Appendix: Page-47
	Model Selection Reference (Push Force vs. Current Limit)	Appendix: Page-63
	Model Selection Reference (RCP2 High-thrust Jype)	Appendix: Page-70
	Model Selection Reference (RCS2 Ultra-Higt Thrust Type)	Appendix: Page-71
	Model Selection Reference (RCP2 Gripper)	Appendix: Page-74
	Model Selection Reference (RCP2 Rotary)	Appendix: Page-79
	Model Selection Reference (Allowable Load Moment of the Guide)	Appendix: Page-80
	Model Selection Reference (Allowable Load at Guide Tip)	Appendix: Page-81
	Model Selection Reference (Bádial Load of the Guide)	Appendix: Page-84
	Model Selection Reference (Flat Type)	Appendix: Page-88
	Comparison Table of ${ }^{\text {gld }}$ and New Models	Appendix: Page-89
Information	Overseas Network	Appendix: Page-93
	Index	Appendix: Page-99

Considerations when Switching from Air Cylinders

Air Cylinder and ROBO Cylinder

Air cylinders are devices used to push and grasp objects by means of supplying and releasing compressed air. Air cylinders are used widely in all industries, mainly for transfer equipment, assembly systems, various automation systems, etc.
Air cylinders generally have diameters of between 4 mm and 320 mm , and their lengths (strokes) can also be set in fine steps. There are several tens to hundreds of thousands of different air cylinder products, which makes it easy to select optimal models for a variety of applications. However, since product lines are overly complex, many with identical specs, it can be difficult to
select the best model for your specifications.
For this reason, there are many cases where air cylinders are selected largely out of past experience and familiarity. ROBO Cylinders are easy-to-use electric cylinders offering a variety of functions not achievable with air cylinders. The ROBO Cylinder product family makes it easy for you to select the model that best suits the needs of your application. However, the controls and configuration possibilities of ROBO Cylinders are completely different from air cylinders.
This section explains some of the key points to consider when switching from air cylinders to ROBO Cylinders.

Overview of Switching

The following explains the differences in the basic items to be checked when selecting ROBO Cylinders and air cylinders.
Since both are linear motion actuators, there are some common matters that must be taken into consideration. However, the different configurations and controls described above result in different designations for adjustments and check items between the two. A comparison of these various items is shown at right.

The above diagram shows that the two have different mechanical viewpoints to consider.

Installation Space

ROBO Cylinders are driven by a motor. Compared with air cylinders, simply from a size perspective, the ROBO Cylinder requires more attention paid to space requirements for installation

Home Return

Unlike air cylinders, ROBO Cylinder operation is based on a "coordinates" concept. A home return operation is necessary at the beginning of operation because operations are controlled in movement quantities that are always referenced against a home point (0 point).

Specifically, in the case of incremental specifications, bear in mind that a pushing operation to the actuator stroke end will be performed as the initial operation when the power is turned ON.

- Incremental Specification: Return home operation after power is turned ON
- Absolute Specification : Absolute reset operation during initialization
(1) Return home
(2) Move to target
position

Critical Rotating Speed

The ball screw inevitably deflects due to bending and its own deadweight. The ROBO Cylinder operates at high speeds causing the ball screw to rotate faster, and as the rotations increase the screw deflection also increases until the rotating axis is ultimately damaged. Hazardous rotational speeds that may damage the rotary axis are referred to as "critical speeds", "whirling speeds" or "whipping speeds".
Ball screw type ROBO Cylinders operate linearly as the ball screw is rotated with the end of the ball screw supported by a bearing. Although the maximum speed is specified for each ROBO Cylinder in accordance with the actuator type, some models with certain strokes have their maximum speed set in consideration of the aforementioned critical rotating speeds.

General Purpose (Types, Modes, Parameters)

ROBO Cylinders offer the "air-cylinder specification (or air cylinder mode)" that allows the ROBO Cylinder to be used just like an air cylinder. When using these, it is possible to operate the actuator by simple ON/OFF control by an external signal in exactly the same way as an air cylinder. This type or mode may be sufficient in the case of a simple swap-out, but a variety of types and parameters have been introduced for customers who desire higher value-added uses.
Feel free to contact our Customer Center
(Toll free for Western U.S. 800-736-1712, Central U.S. 800-944-0333, and Eastern U.S. 888-354-9470) to discuss features to match your use conditions and needs when the equipment is actually installed.

Maintenance

The key maintenance points of air cylinders and ROBO Cylinders are compared.
Air cylinders require periodic maintenance performed according to the frequency and conditions of use. Although air cylinders offer a certain level of flexibility in that minor damage or malfunction can be ignored by means of increasing the source air pressure and moving the cylinder with a greater force, ignoring maintenance will inevitably shorten the service life of the air cylinder., On the other hand, ROBO Cylinders have a more complex structure and use a greater number of parts and are therefore seen as requiring cumbersome maintenance work. This is wrong. ROBO Cylinders are clearly easier to use and offer longer fife than air
cylinders. Qf gourse, ROBO Cylinders also require lubrication of sliding parts just as air cylinders do. However, ROBO Cylinders are equipped with a lubrication unit (AQ Seal) for ball screw and the sliding parts of the guides. This ensures a long maintenancefree period $(5,000 \mathrm{~km}$ of traveled distance, or three years). After $5,000 \mathrm{~km}$ or travel or 3 years, greasing every 6 months to 1 year as instructed in the Operating Manual will vastly prolong the service life of the product. In addition, absolute type controllers are currently equipped with a position retention battery. Since this is a consumable part, it must be periodically replaced (for periods that vary with the product).

Operation

Air cylinders are generally operated with the use of a direction control valve to determine the direction of reciprocating motion, as well as a flow control valve (speed controller) to determine the speed. Immediately after their system is started up, many users operate the air cylinder at low speed by restricting the flow control valve.

The same procedure is also recommended for ROBO Cylinders after the system is started up. With ROBO Cylinders, "speed setting" replaces the flow control valve. Operate your ROBO Cylinder at speeds where safety is ensured, and then change to the desired speed after safety is confirmed.

Service Life and Moment

One of the main factors related to an actuator's service life is the "load rating".
There are two types of load rating: A static load is the weight of a load that leaves a small amount of indentation when the load is applied. A dynamic load is the weight of a load that maintains a constant survival probably of the guide when the load is applied while moving a constant distant.
Guide manufacturers rate dynamic load values to maintain a 90% survival rate at a travel distance of 50km. However, when taking account the speed of movement and work rate, the actual travel distance needs to be 5,000 to $10,000 \mathrm{~km}$. While the life of a guide is sufficiently long for radial loads, it is actually the moment load that is offset from the guide center that is most problematic to its service life.
The service life for IAI actuators as documented in this catalog shows the allowable dynamic moment based on a 5,000 or $10,000 \mathrm{~km}$ service life.
IAI uses the following equation calculate the service life: (for $10,000 \mathrm{~km}$ service life)

$L_{10}=\left(\frac{C_{I A}}{P}\right)^{3} \cdot 10,000 \mathrm{~km}$	$L_{10}:$ Service life (90\% Survival Probability)
$C_{I A}:$ Allowable Dynamic Moment in IAI Catalog	
	$P \quad:$ Moment used

Allowable Dynamic Moment

The allowable dynamic moment is the maximum offset load exerted on the slider, calculated from the guide service life. The direction in which force is exerted on the guide is categorized into 3 directions - Ma (pitch), Mb (yaw), Mc (roll) - the tolerance for each of which are set for each actuator. Applying a moment exceeding the allowable value will reduce the service life of the actuator. Use an auxiliary guide when working within or in excess of these tolerances.

Overhang load length

An overhang load length is specified for a slider-type actuator to indicate the length of overhang (offset) from the actuator.
When the length of a Object mounted to the slider actuator exceeds this length, it will generate vibration and increase the settling time. So, pay attention to the allowable overhang length as well as the allowable dynamic moment.

Allowable Dynamic Moment and Allowable Static Moment

There are two types of moment that can be applied to the the guide: the allowable dynamic moment and the allowable static moment.
The allowable dynamic moment is calculated from the travel life (when flaking occurs) when moved with the moment load applied. In contrast, the static moment is calculated from the load that causes permanent deformation to the steel ball or its rolling surface (i.e. rated static moment), taking into account the rigidity and deformity of the base.

[Allowable Dynamic Moment]

IAI's catalog contains the allowable dynamic moments based on a load coefficient of 1.2 and $10,000 \mathrm{~km}$ or $5,000 \mathrm{~km}$. This value is different from the so-called basic rated dynamic moment, which is based on a 50 km travel life. To calculate the basic rated dynamic moment for a 50 km travel life, use the following equation.

Ms : Allowable dynamic moment at an assumed travel distance (catalog value)
S : IAI catalog assumed travel life $(5,000 \mathrm{~km}$ or $10,000 \mathrm{~km})$
f_{w} : Load coefficient (=1.2)
M_{50} : Basic rated dynamic moment (50km travel life)

The allowable dynamic moments mentioned in the catalog ($10,000 \mathrm{~km}$ or $5,000 \mathrm{~km}$ life) are based on a load coefficient fw=1.2. To calculate the service life of a guide with a different load coefficient, use Table 1 below to determine the load coefficient that matches your requirements.

Table 1: Load Coefficients

Operation and Load Requirements	Load Coefficient fw
Slow operation with light vibration/shock (1500mm/s or less, 0.3 G or less)	$1.0 \sim 1.5$
Moderate vibration/shock, abrupt braking and accelerating ($2500 \mathrm{~mm} / \mathrm{s}$ or less, 1.0 G or less)	$1.5 \sim 2.0$
Operation with abrupt acceleration/deceleration with heavy vibration/shock ($2500 \mathrm{~mm} / \mathrm{s}$ or faster, 1.0 G or faster)	$2.0 \sim 3.5$

$L_{10}=\left(\frac{C_{I A}}{P} \cdot \frac{1.2}{f_{w}}\right)^{3} x S \ldots$ Equation (2)
$L_{10}:$ Service life (90% Survival Probability')
$C_{I A}:$ Allowable dynamic moment in IAI Catalog $(5,000 \mathrm{~km}$ or $10,000 \mathrm{~km})$
$\mathrm{P}:$ Moment used (\leq CIA)
$\mathrm{S}:$ IAI catalog assumed travel life ($5,000 \mathrm{~km}$ or $10,000 \mathrm{~km}$)
$\mathrm{f}_{\mathrm{w}}:$ Load coefficient (from Table 1)

[Allowable Static Moment]

The maximum moment that can be applied to a slider at rest.
These values are calculated by taking the basic rated static moment of the slider and multiplying with the safety rate that takes into consideration any effects from the rigidity and deformity of the base.

Therefore, if a moment load is applied to the slider at rest, keep the moment within this allowable static moment. However, use caution to avoid adding any unexpected shock load from any inertia that reacts on the load.

[Basic Rated Static Moment]

The basic rated static moment is the moment value at which the sum of the permanent deformation at the center of contact between the rolling body (steel ball) and the rolling surface (rail) is 0.0001 times the diameter of the rolling body.

These values are simply calculated strictly from the permanent deformation done to the steel ball and its rolling surface. However, the actual moment value is restricted by the rigidity and deformation of the base. Hence, the allowable static moment the actual moment that can be applied statically, taking into account those factors.

Technical Information

How to calculate positioning time

The actuator positioning time can be found from an equation.
Depending on the distance to be moved and the amount of acceleration/deceleration to be applied, the positioning operation can follow one of two patterns, shown below:

First confirm the movement pattern as trapezoidal or triangular, then calculate the positioning time using the respective equation.

Confirming the Movement Pattern

Whether a movement pattern is trapezoidal or triangular can be determined by whether the peak speed reached after accelerating over a distance at a specified rate is greater than or less than the specified speed.
Peak speed $($ Vmax $)=\sqrt{\text { Distance travelled (Smm) } \times \text { Specified acceleration }}$
$=\sqrt{\mathrm{Smm} \times 9,800 \mathrm{~mm} / \mathrm{sec}^{2} \times \text { Acceleration setting }(\mathrm{G})}$

If $\mathrm{Vmax}>\mathrm{V}$: Trapezoidal pattern
If $V \max <\nu$. Triangular pattern, where V max is the peak speedreached and V is the speed that was specified.

Method of Calculating the Positioning Time

A Trapezoidal Pattern

Positioning Time $(T)=\frac{\text { Distance }(\mathrm{mm})}{\text { Speed }(\mathrm{mm} / \mathrm{sec})}+\frac{\text { Speed }(\mathrm{mm} / \mathrm{sec})}{\text { Accel. }\left(\mathrm{mm} / \mathrm{sec}^{2}\right)}+$ Positioning Settling Time

B Triangular Pattern

Positioning time (sec)
Accel. Time $=\frac{\text { Speed }^{\star}(\mathrm{mm} / \mathrm{sec})}{\text { Accel. }\left(\mathrm{mm} / \mathrm{sec}^{2}\right)}$

Distance Accelerated $=\frac{\text { Accel. }\left(\mathrm{mm} / \mathrm{sec}^{2}\right) \times(\text { Accel. Time }(\mathrm{sec}))^{2}}{2}$

* Here, "Speed" refers to the specified speed in the trapezoid pattern, and the peak speed in the triangle pattern.
- The acceleration is calculated by the following: Acceleration setting in the controller $(\mathrm{G}) \times 9,800 \mathrm{~mm} / \mathrm{sec}^{2}$. If the acceleration setting in the controller is 0.3 G , then $0.3 \times 9,800 \mathrm{~mm} / \mathrm{sec}^{2}=2,940 \mathrm{~mm} / \mathrm{sec}^{2}$.
- The positioning settling time is the time required to determine the completion of movement to the target position, typically around 0.15 sec for ball screw types and 0.2 sec for belt types.

Accel. Setting	Specified Speed (mm/sec)	Distance Moved (mm)																		
		10	20	30	40	50	100	150	200	250	300	350	400	450	500	600	1000	1100	0	140
0.36	100	0.13	0.23	0.33	0.43	0.53	1.03	1.53	2.03	2.53	3.03	3.53	4.03	4.53	5.03	6.03	10.03	11.03	13.0	14.0
	200	0.12	0.17	0.22	0.27	0.32	0.57	0.82	1.07	1.32	1.57	1.82	2.07	2.32	2.57	3.07	5.07	5.57	6.57	7.07
	300	0.12	0.16	0.2	0.24	0.27	0.44	0.6	0.77	0.94	1.1	1.27	1.44	1.6	1.77	2.1	3.44	3.77	4.44	4.77
	400	0.12	0.16	0.2	0.23	0.26	0.39	0.51	0.64	0.76	0.89	1.01	1.14	1.26	1.39	1.64	2.64	2.89	3.39	3.64
	500	0.12	0.16	0.2	0.23	0.26	0.37	0.47	0.57	0.67	0.77	0.87	0.97	1.07	1.17	1.37	2.17	2.37	2.77	2.97
	600	0.12	0.16	0.2	0.23	0.26	0.37	0.45	0.54	0.62	0.7	0.79	0.87	0.95	1.04	1.2	1.87	2.04	2.37	2.54
	700	0.12	0.16	0.2	0.23	0.26	0.37	0.45	0.52	0.6	0.67	0.74	0.81	0.88	0.95	1.1	1.67	1.81	2.1	2.24
	800	0.12	0.16	0.2	0.23	0.26	0.37	0.45	0.52	0.58	0.65	0.71	0.77	0.83	0.9	1.02	1.52	1.65	1.9	2.0
	900	0.12	0.16	0.2	0.23	0.26	0.37	0.45	0.52	0.58	0.64	0.7	0.75	0.81	0.86	0.97	1.42	1.53	1.75	1.86
	1000	0.12	0.16	0.2	0.23	0.26	0.37	0.45	0.52	0.58	0.64	0.69	0.74	0.79	0.84	0.94	1.34	1.44	1.64	1.7
	1750	0.12	0.16	0.2	0.23	0.26	0.37	0.45	0.52	0.58	0.64	0.69	0.74	0.78	0.82	0.9	1.17	1.37	1.56	1.65
	2000	0.12	0.16	0.2	0.23	0.26	0.37	0.45	0.52	0.58	0.64	0.69	0.74	0.78	0.82	0.9	1.17	1.22	1.33	1.48

[^0]
Acceleration time

Reference Chart of Movement Time per Speed/Acceleration

The charts below show the estimated time required for the movement per speed/acceleration. Please use it as a reference for cycle time.
(Note) Stroke indicates the one-sided and unidirectional movement distance. For RCP2, RCP3 and ERC2, please note that the maximum speed varies depending on load capacity.

Speed 800mm/s

Speed 400mm/s

Speed 200mm/s

Information on special orders

If you don't find your desired product in this catalog, feel free to contact us, as we are able to fill special orders.
Some typical special orders are shown below for your reference.

Caution:

Special order is not always available for all the models. Please feel free to contact us for details.

Special Stroke

Ex.) RCP2-SA6 800 Stroke (Non-standard stroke)

Cable Outlet Directional Changes

Ex.) Actuator cable outlet top/bottom

Special Motor

Ex.) Mount Customer-Specified Motor Specification

Appendix: - $\mathbf{9}$

Side-Mount Motor Orientation

Ex.) Side-Mount Motor to the Bottom

Special Connector

Ex.) Change motor-encoder connector to waterproof connector

Special Slider

Double Slider Specification (Add non-driven slider)

Sensor Specifications

Ex.) Sensor Mounting Specifications

Lead-End Tapped Hole Processing
Ex.) Add a tapped hole to the lead-end of the rod in a rod type

Other

- Special Ball Screw Lead

- Raydent Treated Ball Screw
- ESD (Electrostatic Discharge) Specification
- Assembly Unit

Appendix: - 11

Correlation Table by RoHS Order/CE Mark/UL Listed Models

Technical Reference

Correlation Table by RoHS Order/CE Mark/UL Listed Models

		Type, Model		$\begin{aligned} & \text { © : Standard / } \\ & \Delta: \text { Special order / } \end{aligned}$		Option Not available
Product Family	Series Name			RoHS Compliance	CE Mark Compliance	UL Compliance
Single-Axis	IS	Standard	S/M/L/T	\times		
	ISA	Standard	S/M/L/W	\bigcirc		
	ISWA	Dustproof/Splash-proof	S/M/L	\times		
	ISPWA	Dustproof/Splash-proof	S/M/L	\times		
	ISD	Standard	S/M/L/W	\times		
	ISDA	Standard	S/M/L	\bigcirc		
	ISP	Standard	S/M/L/W	\times		
	ISPA	Standard	S/M/L/W	\bigcirc		
	ISPD	Standard	S/M/L	\times		
	ISDACR	Cleanroom				
	ISPDACR	Cleanroom	S/M/L/W	\bigcirc		
	NS	Standard	LXMS/LXMM/LXMXS	©		
			LZMS/LZMM	\bigcirc		
	IF	Standard	SA/MA	0		
	FS	Standard	N/W/L/H	0		
	DS	Slider	SA4/SA5/SA6	- x^{x}		
		Arm	A4/A5/A6	$\int x$		
		Cleanroom	$\square-$	- \times		
		Absolute	-	\times		
	SS	Standard	S/M	\times		
	SSCR	Cleanroom	- -	\times		
	RS	-	-	\bigcirc		
Cartesian Robots	ICSA	-	-	\bigcirc		
	ICSPA					
SCARA	IH	-		\times		
	IX	Standard	120/150/180	\bigcirc		
			250/350	\bigcirc	\bigcirc	
			500/600	O	\bigcirc	
			700/800	\bigcirc	\bigcirc	
		Cleanroom	250/350/500/600/700/800	\bigcirc	\bigcirc	
		Dustproof/Splash-proof		O	\bigcirc	
		Suspended, High-Thrust, Wall-Mounted	C	\bigcirc	O	
Linear	LS	Small/Large	s/L	\times		
	LSA	Small	H	\bigcirc		
		Medium	N	\bigcirc		
		Large	W	\bigcirc		
		Shaft	S	\bigcirc		
		Flat	L	O		
Table-top	TT	Old	TT-300	\times		
		New	TT-A2/A3/C2/C3	\bigcirc	\bigcirc	
Other	TX	-	- -	O		
	Motor	ISAC	200W/400W	\bigcirc		
	Unit	ISAC High-Rigidity (T1)	60W(RS)/100W/150W	O		
ROBO Cylinder Controllers	PCON	Standard	C/CG	©	©	©
		High-Thrust	CF	©	©	©
		compact	CY/SE/PL/PO	©	©	©
	ACON	Standard	C/CG	\bigcirc	©	©
		Compact	CY/SE/PL/PO	©	©	©
	SCON	-	-	©	©	
	PSEL	-	-	©	(0)	
	ASEL	-	-	©	©	
	SSEL	-	-	\triangle	©	
	ROBONET	GatewayR Unit	RGW-DV/RGW-CC	©	©	©
			RGW-PR/RGW-SIO			
		Controller Unit	RACON/RPCON-	©	©	©
		Simple Absolute R Unit	RABU	\bigcirc	©	\bigcirc
		Extension Unit	REXT	\bigcirc	©	\bigcirc
	RCP2	Standard	C/CG	\bigcirc	©	©
		High-Thrust	CF	\bigcirc	(©
		Absolute	-	\bigcirc	©	©
	RCS	100V/200V	C	\times		
		24V (General)		\times		
		24V (Economy)	E	\times		
		EU	-	\times	©	
		CC-Link (256-point)	-	\times		
		DeviceNet	-	\times		
		ProfiBus	-	\times		

Product Family	Series Name	Type, Model			RoHS Compliance	CE Mark Compliance	Compliance	
Controllers for Single-Axis/ Cartesian/ SCARA	E-Con	Standard		-	\times			
		EU		-	\times	()		
		CC-Link (256-point)		-	\times			
		DeviceNet		-	\times			
		ProfiBus		-	\times			
		Absolute		-	\times			
	P-Driver	-		-	\times			
	TX	TX-C1		-	\bigcirc			
	XSEL-J/K	Small	J		\triangle			
		General	K		\triangle			
		Global	KT		\triangle			
		CE	KE/KET		\triangle	©		
		SCARA	JX/KX		\triangle			
		General Extension SIO	IA-105-X-MW-A/B/C		Q			
	XSEL-P/Q	Standard	P		\triangle	©		
		Global	Q		\triangle	©		
		SCARA	PX/QX		\triangle	©		
	XSEL Option	CC-Link (256-point)	IA-NT-3206/4-CC256		O			
		CC-Link (16-point)	IA-NT-3204-CC16	-	O			
		DeviceNet	IA-NT-3206/4-DV	(O			
		ProfiBus	IA-NT-3206/4-PR	-	O			
		EtherNet	IA-NT-3206/4-ET	10	O			
		Extension PIO	IA-103-X-32/16	1	\bigcirc			
		Multi-Point I/O	IA-IO-3204/5-NP/PN	\cdots	\bigcirc			
	DS-S-C1	Standard			\times			
		EU			\times			
	SEL-E/G	Standard	\cdots		\times			
		EU		-	\times			
	SEL-F	-	-	-	\times			
	IH	-	-	-	\times			
Table-top	$\begin{gathered} \text { TT } \\ \text { (Controller } \\ \text { Section) } \end{gathered}$	Old		-	\times			
		New		-	\bigcirc	©		
Teaching Pendant	New RC Types	CON-T	C ${ }^{1}$	-	()	©		
		Safety Category Compliant	CON-TG		©	©	©	
	RCP2	Standard (with Deadman Switch)	RCA-T/TD		\times			
	ERC		RCM-T/TD					
	RCS	Simple	RCA-ES		Δ			
	E-Con		RCM-E					
	RC	Data Setting Unit	RCA-PS		\triangle			
			RCM-P					
	RCP2	JOG Switch	RCB-J		Δ			
	ERC							
	New SEL	Standard	SEL-T			©	©	
		Safety Category Compliant	SEL-TD/TG		\bigcirc	©	\bigcirc	
	XSEL	Standard	IA-T-X(IA-T-XD)		\times			
		(with Deadman Switch)						
	DS	DS-S-T1		-		\times		
	E/G, F	NE-T-SS		-	\times			
	IH	IA-T-IH		-	\times			
	TX	TX-JB		-	\bigcirc			
Touch Panel	-	RCM-PM-01		-	(
Simple Absolute Unit	PCON, ACON	PCON-ABU	-		©	©		
		ACON-ABU						
DC24V Power Supply	-	PS-241/PS-242		-		O		
Gateway Unit	RCM-GW	DV	RCM-GW-DV		\bigcirc	©		
		CC	RCM-GW-CC		O	©		
Regenerative Resistance Unit	E-Con	REU-1	-		\bigcirc			
	PDR							
	XSEL							
	SCON	REU-2		-				
	SSEL					\bigcirc		
	XSEL-P/Q							
Absolute Battery	HAB	IA-HAB		-	\times			
	RCP	AB-2		-	\times			
	RCP2	AB-4		-	\bigcirc			
	RCS	AB-1		-	\times		©	
	XSEL-J/K	IA-XAB		-	\bigcirc		©	
	XSEL-P/Q	AB-5		-	O		©	

Correlation Table by RoHS Order/CE Mark/UL Listed Models

		Type, Model		© : Standard / Δ : Special order /		Option Not available
Product Family	Series Name			RoHS Compliance	CE Mark Compliance	Compliance
Brake Box	E/G	1-Axis AC	H-109-[A	\times		
		1-Axis DC	H-109-0D	\times		
		2-Axis AC	H-110-DA	\times		
		2-Axis DC	H-110-DDH-500	\times		
		Coil	H-500	\times		
	GDS	1-Axis	H-401	\times		
		2-Axis	H-402	\times		
	XSEL-J/K	IA-110-X-0	-	\bigcirc		
PIO Terminal Block	-	-	RCB-TU-PIO-A/B	O		
SIO Converter	-	-	RCB-TU-SIO-A/B	\bigcirc		
RS232 Converter	RCS	New	RCB-CV-MW	\bigcirc		
Unit	ERC	Old	RCA-ADP-MW	\times		
Multi-Point I/O	XSEL-K	TU-MA96(-P)	- -			
Board Terminal Block				-		
Filter Box	E-Con	PFB-1	-	\times		
Pulse Converter	PDR	AK-04	-	- 0		
I/O Extension Box	E/G	H-107-4	-	$\int x$		
M/PG Cable	RCP3	Motor-Encoder Integrated Cable	CB-PCS-MPA	©		\bigcirc
	RCP/RCP2	Motor Cable	CB-RCP2-MA	©		\bigcirc
		Encoder cable	CB-RCP2-PB	\bigcirc		\bigcirc
			CB-RFA-PA			
			CB-RCP2-PA- ** -RB	©		O
			CB-RFA-PA- * -RB *			0
	RCA2	Motor-Encoder Integrated Cable	CB-ACS-MPA	©		\bigcirc
	RCA	Motor Cable	CB-ACS-MA	\bigcirc		0
		Encoder cable	CB-ACS-PA	©		\bigcirc
			CB-ACS-PA- ** RB	©		0
	RCS2	Motor Cable	CB-RCC-MA	\bigcirc		
			CB-RCC ${ }^{*}{ }^{\text {A }}$ - ***-RB	©		
		Encoder cable	CB-RCS2-PA	©		
			CB-RCBC-PA	©		
			CB-RCBC-PA- **-RB	©		
	XSEL	Motor Cable	CB-X-MA	©		
		Encoder cable	GB-X-PA	©		
			CB-X1-PA/PLA	©		
			CB-X2-PA/PLA	©		
			CB-X1-PA- **-WC	©		
		Limit Switch Cable	CB-X-LC	©		
	TX	Motor Cable	CB-TX-ML050-RB	©		
Other	RC	PC software	RCM-101-MW	©		
			RCM-101-USB	-		
		External Communication Cable	CB-RCA-SIO020	\bigcirc		
		RS232C Converter Cable	RCB-CV-MW	©		
		USB Cable	CB-SEL-USB010	©		
		USB Conversion Adapter	CB-CV-USB	\bigcirc		
		Link Cable	CB-RCB-CTL002	©		
	SCON	Pulse Train Control Cable	CB-SC-PIOS	©		
	XSEL	PC software	IA-101-X-MW	\bigcirc		
		(Cable + EMG BOX)	IA-101-XA-MW	\bigcirc		
			IA-101-X-USB	©		
			IA-101-X-USBMW	\bigcirc		
			EMG SW BOX	\bigcirc		
		Insulating Cable (Standalone)	CB-ST-E1MW050	©		
			CB-ST-A1MW050	©		
			CB-SEL-USB010	\bigcirc		
		USB Conversion Adapter	IA-CV-USB	©		
		I/O Flat Cable	CB-X-PIO	\bigcirc		
	TX	Connection Cable	CB-TX-P1MW020	O		

SuperSEL Language

Our PSEL/ASEL/SSEL/XSEL controllers control actuator operation and communications, etc. using programs that have been prepared using the SuperSEL language.

The SuperSEL language is the simplest of the numerous robotic languages.
SuperSEL adeptly solves the difficult question of "realizing a high level of control with a simple language."

SuperSEL has a step-wise structure in which commands are entered in operation sequence, which are then executed in sequence from step 1, making it extremely easy to understand, even for a novice.

The SuperSEL language has two types of data: "program data," which runs commandS to move the various axes and commands to performed external communications, and "position data," Which records the positions to which the various axes are moved.

Program data can be entered as up to 9,999 command steps, which can be divided into 128 programs. Position data can be registered for up to $\mathbf{2 0 , 0 0 0}$ positions, with 3 axes,worth of position data for each position. (These maximum values are different depending on each controller, for details please refer to the catalog page for each controller.)

When each of the axes is moved, the motion command in the program data designates the number of position data, and it is moved to the position registered in the position data.

Operation Summary

Apply sealant to a plate along the path shown in the figure below.
Continuous movement is performed along a path from position 1 to position 9 , without stopping.

Program

Step	Extension Condition	Input Condition	Co Minand	Operation 1	Operation 2	Output Condition	Comment
1			HOME	100			Homing on Z-axis only
2			HOME	11		Homing on XY axes	
3			VEL	100		Set speed to 100mm/sec	
4			ACC	0.3		Set acceleration to 0.3G	
5			TAG	1		Destination of GOTO1 in step 11	
6			WTON	16		Stop until input 16 from the start button	
7			MOVP	10		Move to space above Position 1 (i.e. Position 10)	
8			MOVP	1		Move (down) to Position 1	
9			PATH	2		With position 1 as base point, move continuously to position 9	
10			MOVP	10	9	Move to space above Position 1 (i.e. Position 10)	
11			GOTO	1			Jump to TAG1

Appendix:-17

10,000km service life

Around 10,000 hours are guaranteed for actual use in the field. When considering the speed, work ratio, etc, this translates to a distance of 5,000 to $10,000 \mathrm{~km}$. While the life of a guide is sufficiently long for radial loads, it is the uneven loads due to moment loads that are problematic to its service life.
For this reason, the $10,000 \mathrm{~km}$ service life is established by specifying the rated dynamic load moment that can guarantee $10,000 \mathrm{~km}$ of travel distance.

50 km service life

A way of expressing the allowable load capacity, submitted by the guide manufacturer. This is the value at which the probability of the guide not breaking (i.e. survival probability) when used with this allowable radial load (basic dynamic rated load) is 90%.

Calculating the actual distance of travel, considering the motion velocity and work rate, etc, an actual industrial equipment, it is necessary to ensure $5,000 \mathrm{~km}$ to $10,000 \mathrm{~km}$ of travel. From that viewpoint, this data is difficult to understand and difficult to utilize.

A-phase (signal) output / B-phase (signal) output

The direction of rotation (CW or CCW) of the axis is determined from the phase difference between the A-phase and the B-phase of the incremental encoder output, as shown in the diagram below. In a clockwise rotation, the A-phase is ahead of the B-phase.

Absolute positioning accuracy

When positioning is performed to an arbitrary target point specified in coordinate values, the difference between the coordinate values and the actual measured values.

Backlash

As shown in the figure on the right, there is a gap between the nut and the ball (steel ball) and the screw shaft. Even if the screw shaft moves, the nut will not move the extent of the gap. The mechanical play in the
 direction of this slider movement is called the backlash. The measurement method used is to feed the slider, then use the reading for the slight amount of movement time shown on a test indicator as a standard. Also, in that condition, without using the feed device, move the slider in the same direction with a fixed load, then without the load. Then find the difference between the standard value and the time when the load was removed. This measurement is conducted at the midpoint of the distance of movement and at points nearly at the two ends. The maximum value obtained among the values is used as the measurement value.

Bellows
A cover to prevent the infiltration of dust or debris from outside.

Brake

Primarily used for the vertical axis to prevent the slider from dropping when the servo is turned off. The brake activates when the power is turned off.

C10

One of the grades of a ball screw. The lower the number, the higher the precision.

Grade C10 has a typical movement error of $\pm 0.21 \mathrm{~mm}$ for a 300 mm stroke.

CCW (Counterclockwise rotation)

Abbreviation for counterclockwise rotation.
It describes a rotation to the left, as viewed from above, i.e. opposite of the rotation of a clock's hands.

Explanation of Terms

Cleanliness

Class 100 and Class 10, etc. are units for expressing cleanliness. Class $10(0.1 \mu \mathrm{~m})$ indicates an environment in which there are fewer than 10 pieces of debris $0.1 \mu \mathrm{~m}$ or smaller per cubic foot.

Coupling

A component used as a joint to join a shaft to another shaft. e.g. The joint between the ball screw and the motor.

Creep sensor

An optional sensor to allow high-speed homing operation.

Critical speed

Ball screw resonation with slider speed (No. of ball screw rotations). The maximum physical speed limit that can be utilized.

CW (Clockwise rotation)

Abbreviation for clockwise rotation.
It describes a rotation to the right, as viewed from above, ies" same as the rotation of a clock's hands.

Cycle time

The time taken by one process.

Dispenser

A device that controls the flow rafe of a liquid. This is integrated into devices for applying adhesives, sealants, etc.

Duty

Indicates the work ratio in the equipment industry. (e.g. The time that the actuator operates in one cycle.)

Dynamic brake

A brake that uses the motor's regenerative energy.

Encoder

A device for recognizing the RPM and the direction of a rotation by shining a light onto a disc with slits, and using a sensor to detect whether the light is ON or OFF as the disc is rotated. (i.e. a device that converts rotation into pulses.) The controller uses this signal from the encoder to determine the position and speed of the slider.

Incremental Absolute

detects the rotational angle and the RPM of the axis from the number of output pulses. To detect the rotational angle and the RPM, a counter is needed to cumulatively add the number of output pulses. An incremental encoder allows you to electrically increase the resolution by using the rise and fall points on the pulse waveform to double or quadruple the pulse generation frequency.
An absolute encoder
detects the rotation angle of the axis from the state of the rotation slit, enabling you to know the absolute position at all times, even when the rotating slit is at rest. Consequently, the rotational position of the axis can always be checked even without a counter.
In addition, since the home position of the input rotation axis is determined at the time it is assembled into the machine, the number of rotations from home can always be accurately expressed, even when turning the power ON during startup or after a power outage or an emergency stop.

Excess voltage

Voltage applied to motor that exceeds regulation value when commanded speed is too fast.

External operation mode

This is the operation mode started by a start signal from an external device (PLC, etc.). This is also called automatic operation.

Flexible hose

Tube for SCARA Robot MPG cable that the user passes wiring through.

Gain

The numeric value of an adjustment of the controller's reaction (response) when controlling the servo motor. Generally, the higher the gain the faster the response, and the lower it is the slower the response.

Gantry

A type of two-axis (X and Y) assembly in which a support guide is mounted to support the Y -axis, so that heavier objects can be carried on the Y -axis.

Grease

High-viscosity oil applied to contact surfaces to make the guide and the ball screw move smoothly.

Greasing

Injection or application of grease to sliding parts.

Guide

A mechanism for guiding (supporting) the slider of the actuator. A bearing mechanism that supports linear motions.

Guide module

An axis in a two-shaft assembly that is used in parallel with the X-shaft to support the end of the Y-shaft when the Y-shaft overhang is long. Typical models include the FS-12WO and FS-12NO.

Home

Reference point for actuator operation. The pulse counts are determined and recorded for all positions the actuator moves to / from home.

Home accuracy

The amount of variation among the positions when home return is performed (if home varies, all positions vary).

Key slotted

A rotary shaft or mounting component is machined with a slot for key mounting.
(Key: One means of preventing positional slip in the rotation direction of the rotary axis and the mounting component)

Lead
The lead of the feed screw is the distance moved after the motor (hence the feed screw) has rotated one turn.

Understanding lead value

The lead value changes the actuator speed and thrust.

- Speed: With an IS AC servo motor, the rated rpm is $3,000 \mathrm{rpm}$. In other words, this is 50 revolutions per second. In this case, with a 20 mm screw lead,
the speed is 50 revolutions $/ \mathrm{s} \times 20 \mathrm{~mm} /$ revolution $=1,000 \mathrm{~mm} / \mathrm{s}$.

Thrust: If the lead is arge, then the thrust is small; and vice-versa.

Load capacity (Payload)
The weight of objects that can be moved by the actuator's slider or rod.

Lost Motion [mm]

First, for one position, run with positioning straight in front and then measure that position. Next, make a movement in the same direction by issuing a command. Then, issue the same command for movement in a negative direction from the position. Conduct positioning in the negative direction and measure that position. Again, issue a command for a movement in the negative direction, and issue the same command for a positioning movement straight ahead from that position. Then measure that position.
Using this method, repeat measurement in positive and negative directions, seven times each. Conduct positioning for each and obtain the deviation from the average value for each stop position. Determine the position for the center of the movements in these measurements and positions nearly at both ends. The measurement value will be the maximum value among those obtained. (Complies with JIS B6201)

Mechanical end

Position where actuator slider comes to mechanical stop. Mechanical stopper. (Example: Urethane rubber)

Offline

A state in which the PC software is started without the RS232 cable connected to the controller.

Explanation of Terms

Offset

To shift from a position.

Online mode

The state in which the PC software is started with the RS232 cable connected to the controller.

Open collector output

A system with no overload resistance in the voltage output circuit, that outputs signals by sinking the load current. Since this circuit can turn the load current ON/OFF regardless of voltage potential to which the current is connected, it is useful for switching an external load and is widely used as a relay or ramp circuit or the like for switching external loads, etc.

Open loop system

A type of control system. This system only outputs commands and does not take feedback.
A typical example of this is the stepping motor. Since it does not compare each actual value against the commanded value, even if a loss of synchronization (i.e signal error) occurs, the controller would a not be able to correct it.

The state in which the object that is mounted onto the actuator extends out to the front/rear, leff/right, or above/below the axis of movement.

Overload check

A check for overload. (One of the protection functions)

Override

A setting for the percentage with respect to the running speed. (e.g. If VEL is set to $100 \mathrm{~mm} / \mathrm{sec}$, an override setting of 30 will yield $30 \mathrm{~mm} / \mathrm{sec}$)

Pitch error [pitch deviation or lead deviation]

Due to problems in the manufacturing, such as the heat treatment process used, the deviations of the ball screws, which are a key mechanical element of the actuator, are not always small when inspected closely. A JIS rating is used to indicate the qualitative accuracy of these items.
These items made for the market must meet tolerance values set as Class C10.

The accuracy required to meet the C10 standard is to be within a margin of error of $\pm 0.21 \mathrm{~mm}$ for every 300 mm of length. Generally the screw pitch error deviation accumulates in a plus or minus direction. One method of improving these items is to grind them in a finishing process.
[e.g.] When positioning 300 mm from home:
The machine accepts a set position of 300 ± 0.21. Supposing that the actual stop position is 300.21 , if this position is repeatable and maintained at 300.21 ± 0.02 using a JIS6201-compliant method, then the repeatability standard for accuracy is met.

Pjitching

Forward-backward motion along the axis of the slider's movement. (Direction of Ma)

PLC

Abbreviation for Programmable Logic Controller.
(Also referred to as sequencers or programmable controllers).
These are controllers that can be programmed to control production facilities and equipment.

Positioning band

The span within which a positioning operation is deemed as complete with respect to the target point. This is specified by a parameter. (PEND BAND)
Positioning repeatability
The variation in stop position
accuracy for repeated positioning
toward the same point.

Positioning settling time

The gap between the actual movement time and the ideal calculated value for movement. (Positioning operation time; processing time for internal controller operations.) The broader meaning includes the time for convergence of the mechanical swing.

Radial load

Load up to down in a direction 90° to horizontal slider.

Regenerative energy

Energy, generated by the motor's rotation. When the motor decelerates, this energy returns to the motor's driver (controller). This energy is called regenerative energy.

Regenerative resistance

The resistance that discharges the regenerative current.
The regenerative resistance required for IAI's controllers is noted in the respective page of each controller.

Rolling

SCARA

SCARA is an acronym for Selective Compliance Assembly Robot Arm, and refers to a robot that maintains compliance (tracking) in a specific direction (horizontal) only, and is highly rigid in the vertical direction.

The name of IAI's proprietary programming language, derived from an acronym for SHIMIZUKIDEN ECOLOGY LANGUAGE.

Semi-closed loop system

A system for controlling the position information or velocity information sent from the encoder with constant feedback to the controller.

Servo-free (servo OFF)

The state in which the motor power is OFF. The slider can be moved freely.

Servo-lock (servo ON)

The state in which, opposite to the above, the motor power is turned ON. The slider is continually held at a determined position.

Slider mounting weight [kg]

The maximum mounting weight of the slider when operating normally, without major distortion in the velocity waveform or current waveform, when operated at the specified acceleration/deceleration factor (factory settings).

Software limit

A limit in the software beyond which a given set stroke will not advance.

Stainless sheet

A dust-proof sheet used in ISD, DS, RC, etc. slider types.

Stepper motor (Pulse motor)
A motor that performs angular positioning in proportion to an input pulse signal by means of open loop control.

Thrust load

The load exerted in the axial direction.

Work rate

The ratio between the time during which the actuator is operating and the time during which it is stopped. This is also called duty.

Yawing

Along with pitching, laser angle
measurement system is used for measurement, and the reading is the indication of maximum difference.

Z-phase

The phase (signal) that detects the incremental encoder reference point, used to detect the home position during homing operation.
Searching for the Z-phase signal for the reference during homing is called the "Z-phase search".

Options Available per Model

Cable exit direction

Brake

- Models B, BE, BL and BR

Straight Type

Side-Mounted Motor Type Mounted on left side (ML)

Side-Mounted Motor Type
Mounted on right side (MR)

Actuator cover

- Models CO

Applicable
models
RCP2W-SA16
Description This cover protects the guide area and slider area on the waterproof slider type.

Flange bracket

\square Models FB

Applicable models
RCP2-GRSS / GRLS / GRS / GRM / GR3LS / GR3LM / GR3SS / GR3SM
Description

GRM type
Unit model RCP2-FB-GRM

GR3LS/GR3SS type

Unit model RCP2-FB-GR3S

GR3LM/GR3SM type

Unit model RCP2-FB-GR3M

Explanation of Options

Front flange

Models FL

Description A bracket for affixing the actuator using bolts from the actuator side.

RCP2-RA2C
Unit model RCP2-FL-RA2

RCP2-RA4C

Unit model RCP2-FL-RA4

RCP2-RA3C
Unit model RCP2-FL-RA3

RCS2-SRA7BD

RCP2W-RA4C
Unit model RCP2W-FL-RA4
RCP2W-RA6C
Unit model RCP2W-FL-RA6
Unit model RCS2-FL-SRA7

RCS2-RA13R
Unit model RCS2-FL-RA13

RCA / RCAW-RA3C and RA3D
Unit model RCA-FLR-RA3

ERC2-RA6C / RGS6C / RGD6C

Unit model ERC2-FT-RA6

RCP2-RA3C / RGD3C
Unit model RCP2-FT-RA3

RCP2-RA6C / RGS6C / RGD6C / RCP2W-RA6C
Unit model RCP2-FT-RA6

RCP2-RA2C

Unit model RCP2-FT-RA2

RCP2-RA4C / RGS4C / RGD4C / RCP2W-RA4C Unit model RCP2-FT-RA4

RCP2-RA10G $/$ RCP2W-RA10C Unit model RCP2-FT-RA10

RCA-RA3C / RGS3C / RGD3C
Unit model RCA-FT-RA3

RCA / RA3R / RGS3R / RGD3R
Unit model RCA-FT-RA3R

RCS2-RA13R
Unit model RCS2-FT-RA13

Foot (Mounted on right side face/left side face)

- Models GS2, GS3 and GS4

Applicable

 modelsDescription

RCP2 (RCA)-SRGS4R
RCS2-RGS5C / SRA7BD
For the single-guide model, the mounting position of the rod can be selected from the right (GS2), bottom (GS3), or left side (GS4).

High acceleration/deceleration

Low power compatible

Models LA

Applicable models

RCA / RCA2 / RCACR / RCA Series, all models
This option decreases the power capacity of the controller.
With the standard specification and high-speed acceleration specification, the maximum
Description
is 5.1 A , but if the low-power specification is selected, the maximum decreases to 3.4 A .
(The maximum values differ for some models, so see the power capacities of the ACON/ ASEL controllers for details.)

Explanation of Options

Side-Mounted Motor Orientation

No cover

All slider-type models
All rod-type, table-type, arm-type, and flat-type models
(* excluding RCP2-RA2C / SRA4R / RA10C, RCA2-RN / RP / GS / GD / SD / TC /TW / TFロN, RCA-SRA4R and RCS2-RA5C
/ RA5R / SRA7BD / RA13R)

The normal home position is set by the slider and rod on the motor side, but there is the option for the home position to be on the other side to accomodate variations in device layout, etc. (Note: Home position settings are factory settings. Changes to these settings after the product is delivered will require shipping the product back to IAI for re-setting,)

Knuckle joint

- Models NJ

```
Applicable Rod Type RCA-RA3C / RA3D / RA3R / RA4C / RA4D / RA4R
models
RCS2-RA4C / RA4D / RA4R
Clevis or trunnion fittings give rotational freedom of movement for the ends of the actuator rods.
```


Clevis

Models QR

If the rod is to be moved with a clevis bracket attached to it, use a guide type or install an external guide to prevent the rod from receiving any load other than from its moving direction.

RCA / RCS2-RA4R Unit model RCA-QR-RA4

Explanation of Options

Rod end extension specification

■ Models RE

Applicable models
Description

RCS2-SRA7BD
An adapter for extending the rod end so that the distance between the mounting hole and the rod end can be the same as that of RCS2-RA7BD.

Rear mounting plate

- Models RP

Applicable

models
Description

Motor reversing rod types RCA-RA3R / RA4R and RCS2-RA4R
A bracket (plate) for affixing the back of a motor-reversing rod type (RA3R/RA4R) to the system.

Appendix: - 35
Technical Reference/Information

Shaft bracket

- Models SB

- Models SS

Explanation of Options

Table adapter

Combined w/ RCP2-RTBS/RTBSL

Combined w/ RCP2-RTCS/RTCSL
Configuration: RCP2-TA-RTS (Weight: 0.02 kg)

Combined w/ RCP2-RTBB/RTBBL

Combined w/ RCP2-RTCB/RTCBL
Configuration: RCP2-TA-RTB (Weight: 0.06 kg)

Front trunnion

- Models TRF

| Applicable
 models | Rod TypeRCA-RA3C / RA3D / RA3R / RA4C / RA4D / RA4R
 RCS2-RA4C / RA4D / RA4R |
| :--- | :--- | :--- |
| Description | A bracket for aligning the cylinder movement when the load installed to the tip of the rod
 moves in a direction different from the rod. |

Caution
If a rod is moved with a trunnion bracket mounted to it, use a guide type or install an external guide so no load is applied to the rod in a direction other than the proper direction the rod travels.

Rear trunnion
\square Models TRR

Vacuum joint mounted on opposite side

- Models VR

Applicable models	All cleanroom type models
Description	Looking from the motor side, the standard position for the vacuum joint is on the left side of the actuator, but this option allows users to change the position to the opposite side (right side).

Maintenance Parts

Table of Actuator-Controller Connection Cable Models

This table shows the models of cables connecting the actuator of the vertical axis and the controller of the horizontal axis.
For the details of cabling, cable size, etc., see the applicable page shown beneath the model number.

Connection Controller

PCON－CF	ACON ASEL	$\begin{aligned} & \text { SCON } \\ & \text { SSEL } \end{aligned}$	$\begin{gathered} \text { XSEL } \\ \text { J/K } \end{gathered}$	$\begin{gathered} \text { XSEL } \\ \text { P/Q } \end{gathered}$
Unavailable	Unavailable	Unavailable	Unavailable	Unavailable
Unavailable	Unavailable	Unavailable	Unavailable	Unavailable
Unavailable	Unavailable	Unavailable	Unavaila	Unavailable
Unavailable	Unavailable	Unavailable		Unavailable
Unavailable	Unavailable	Unavailable	Unavailable	Unavailable
Unavailable	Unavailable	Unavailable	Unavailable	Unavailable
Unavailable	Unavailable	ailab	Unavailable	Unavailable
Model CB－RCP2－MAロロロ See page 533 for details．	Unavailable		Unavailable	Unavailable
Model CB－RFA－PA $\square \square \square$ See page 534 for details．	Unavailable	Unavailable	Unavailable	Unavailable
Model CB－RFA－PA $\square \square \square$－RB See page 534 for details．		Unavailable	Unavailable	Unavailable
Unavailable	Model CB－ACS－MPA믐 See page 544 for details．	Unavailable	Unavailable	Unavailable
Unavailable	ModetCBACS－MAロロロ See page 543 for details．	Unavailable	Unavailable	Unavailable
Unavailable	Model CB－ACS－PA $\square \square \square$ See page 544 for details．	Unavailable	Unavailable	Unavailable
Unavailable	Model CB－ACS－PAロロロ－RB See page 544 for details．	Unavailable	Unavailable	Unavailable
Unavailable	Unavailable	Model CB－RCC－MADロロ See page 556 for details．	Model CB－RCC－MA $\square \square \square$ See page 599 for details．	Model CB－RCC－MA $\square \square \square$ See page 599 for details．
Unavailable	Unavailable	Model CB－RCS2－PA $\square \square \square$ See page 556 for details．	Model CB－RCBC－PA $\square \square$ See page 599 for details．	Model CB－RCS2－PAロロロ See page 599 for details．
Unavailable	Unavailable	Model CB－RCC－MA $\square \square \square$－RB See page 556 for details．	Model CB－RCC－MA $\square \square \square$－RB See page 599 for details．	Model CB－RCC－MAロロロ－RB See page 599 for details．
Unavailable	Unavailable	Model CB－X3－PAロロロ See page 556 for details．	Model CB－RCBC－PA $\square \square \square-R B$ See page 599 for details．	Model CB－X3－PAПロロ See page 599 for details．
Unavailable	Model CB－ACS－MPA $\square \square \square$ See page 544 for details．	Unavailable	Unavailable	Unavailable

Table of Replacement Stainless Sheet Models

Series	Type			Stainless Sheet Model
$\begin{aligned} & \text { RCP3 } \\ & \text { RCA2 } \end{aligned}$	SA3C	SA3R		ST-3A3-(Stroke)
	SA4C	SA4R		ST-3A4-(Stroke)
	SA5C	SA5R		ST-3A5-(Stroke)
	SA6C	SA6R		ST-3A6-(Stroke)
RCP2	SA5C	SA5R		ST-2A5-(Stroke)
	SA6C	SA6R		ST-2A6-(Stroke)
	SA7C	SA7R		ST-2A7-(Stroke)
	SS7C	SS7R		ST-SS1-(Stroke)
	SS8C	SS8R		ST-SM1-(Stroke)
	HS8C	HS8R		ST-SM1-(Stroke)
RCA	SA4C	SA4D	SA4R	ST-SA4 (Stroke)
	SA5C	SA5D	SA5R	ST-SA5 -(Stroke)
	SA6C	SA6D	SA6R	ST-SA6-(Stroke)
	SS4D			ST-SS4-(Stroke)
	SS5D			1. ST-SS5-(Stroke)
	SS6D			N ST-SS6-(Stroke)
RCS2	SA4C	SA4D	SA4R	ST-SA4-(Stroke)
	SA5C	SA5D	SA5R	ST-SA5-(Stroke)
	SA6C	SA6D		ST-SA6-(Stroke)
	SA7C		SATR	ST-SA7-(Stroke)
	SS7C		S 57 R	ST-SS1-(Stroke)
	SS8C		SS8R	ST-SM1-(Stroke)
RCP2CR	SA5C			ST-2A5-(Stroke)
	SA6C			ST-2A6-(Stroke)
	SATC			ST-2A7-(Stroke)
	SS7C			ST-SS2-(Stroke)
	SS8C			ST-SM2-(Stroke)
	HS8C			ST-SM2-(Stroke)
RCACR	SA4C			ST-SA4-(Stroke)
	SA5C	SA5D		ST-SA5-(Stroke)
	SA6C	SA6D		ST-SA6-(Stroke)
RCS2CR	SA4C			ST-SA4-(Stroke)
	SA5C	SA5D		ST-SA5-(Stroke)
	SA6C	SA6D		ST-SA6-(Stroke)
	SA7C			ST-SA7-(Stroke)
	SS7C			ST-SS2-(Stroke)
	SS8C			ST-SM2-(Stroke)

Appendix: - 41

Table of RCP3/RCA2 Replacement Motor Unit Models

Table of RCP3/RCA2 Replacement Motor Unit Models

How To Mount an RCL Mini Rod Slim Type To The Actuator

Mount the RCL mini rod slim type using a commercial bracket as shown below. For details concerning the bracket, please refer to the manufacturer.

Shaft Bracket (Iwata Mfg. Co., Ltd.)

B16CP4 (for Ø16)

Maru-Pijon (Miyoshi Pijon Co., Ltd).

PN600 (for Ø16)

PQ600 (for Ø20)

When clamping the main pipe, do not exceed the tightening torque documented in the instructions manual.
Note: If the tightening torque for securing the main pipe is too strong, the pipe may become deformed or defective, and may cause a malfunction.

Selection Standard (Speed vs. Load Capacity Graph)

ERC2 Series

Slider Type

Note: In the graph above, the number after the type is the lead number.

Note: In the graph above, the number after the type is the lead number.

Selection Standard (Speed vs. Load Capacity Graph)

RCP3 Series

Slider Type

Note: In the graph above, the number after the type is the lead number.

Table of Load Capacity per Speed/Acceleration

For RCP3-SA4C/SA5C/SA6C, the acceleration can be increased up to 0.7 G .
However, please note that load capacity decreases as the speed and acceleration increase, as shown below.
[RCP3-SA4C]

[RCP3-SA5C/SA6C]

Selection Standard (Speed vs. Load Capacity Graph)

Table Type

Note: In the graph above, the number after the type is the lead number.

Slider type (Motor straight type)

[^1]
Model Selection Reference (Table of Load Capacity per Speed/Acceleration)

Table of Load Capacity per Speed/Acceleration

For RCP2-SA5C/SA6C, the acceleration can be increased up to 0.7 G .
However, please note that load capacity decreases as the speed and acceleration increase, as shown below.

[RCP2-SA5C]

[RCP2-SA6C]

	Speed (mm / s)	Horizontal Operation Acceleration				$\begin{gathered} \text { Vertical Operation } \\ \hline \text { Acceleration } \end{gathered}$		
		$\cdots \mathrm{O}, 2 \mathrm{G}$	0.3G	0.5G	0.7G	0.1G	0.2G	0.3G
High-Speed Type (Lead 12)	0	8.5	8.5	7	6	1.5	1.5	1.5
	$\begin{aligned} & 100 \\ & \hline 200 \\ & \hline 300 \\ & \hline \end{aligned}$							
	400	6	6	4	3			0.5
	500			3	2		1	
	600			2	1	1		
Medium- Speed Type (Lead 6)	0	16	15	12	10	4	4	4
	50							
	100							
	150					3	3	
	200	15	12	8	6	2.5	2.5	3 2
	300	13		4	3			1
Low-Speed Type (Lead 3)	0	19	19	19	19	6	6	6
	25							
	50							
	75							
	125	16	14	11	10			
	150	15	13	10	9	4	4	2

Slider type (Side-mounted motor type)

Note: In the graph above, the number after the type is the lead number.

Selection Standard (Speed vs. Load Capacity Graph)

RCP2 Series

Slider belt type

Use the graphs below to select the model for your purpose.

Horizontal Setting

RCP2HS8R
RCP2-
HS8C

Vertical Setting

Note: In the graph above, the number after the type is the lead number.
Note 1: This is the number in the case of horizontal specification, when an external guide is attached

Selection Standard (Speed vs. Load Capacity Graph)

RCP2 Series

Single guide type

Note: In the graph above, the number after the type is the lead number.
Note 1: This is the number in the case of horizontal specification, when an external guide is attached.

Selection Standard (Speed vs. Load Capacity Graph)

RCP2 Series

High-thrust type

Maximum Speed 600 $\mathrm{mm} / \mathrm{sec}$

Note: In the graph above, the number after the type is the lead number.

Selection Standard (Speed vs. Load Capacity Graph)

RCP2W Series

Rod type

Appendix: - 61

RCP2W Series

Slider type, Waterproof type

Use the graphs below to select a model for your purpose

Selection Guide (Push Force and Electric Current Limitation Correlation Graph)

ERC2 Series

Slider type

When using slider type for pressing operation, limit pressing current to prevent anti-moment generated by push force from exceeding $8 \mathbf{8 0 \%}$ of the catalog spec rating for moment (Ma, Mb).
To calculate moment, use the guide moment action position shown in the figure below, and consider the amount of offset at the push force action position.
Be aware that, if excess force above the rated moment is applied, the guide can be damaged and its use life can be shortened. Therefore, carefully set the current with safety in mind.

> Note: The movement speed during pressing is fixed at $20 \mathrm{~mm} / \mathrm{s}$.

Example of calculation:
With this type, at the position shown in the figure at the right, when there is 100 N of pressing
the moment received by the guide is $\mathrm{Ma}=(46+50) \times 100$

$$
\begin{aligned}
& =9600(\mathrm{~N} \cdot \mathrm{~m}) \\
& =9.6(\mathrm{~N} \cdot \mathrm{~m}) .
\end{aligned}
$$

The SA7 rated moment is $\mathrm{Ma}=13.8(\mathrm{~N} \cdot \mathrm{~m})$ and $13.8 \times 0.8=11.04>9.6$, which means it is OK. Also, when pressing generates moment Mb, use the overhang calculation to similarly confirm that themoment is within 80% of the rated moment.

The push force during pressing operation can be freely changed by changing the controller current limit value.
The maximum push force changes according to the type of device, so please select the push force you need from the table below.

Caution for Use

- The push force and current limit correlation figures are given as standard. Actual figures will slightly differ.

When the current limit is less than 20%, the push force may vary. Therefore use a current limitation that is 20% or higher.

Movement speed during pressing operation is fixed at $20 \mathrm{~mm} / \mathrm{s}$.

Note: In the graph above, the number after the type is the lead number.

Model Selection Reference (Push Force)

Selection Guide (Push Force and Electric Current Limitation Correlation Graph)

RCP3 Series

Slider Type

When using the slider type for the pressing operation, limit the pressing current to prevent anti-moment generated by push force from exceeding 80% of catalog spec rating for moment (Ma, Mb).
To calculate moment, use the guide moment action position shown in the figure below, and consider the amount of offset at the push force action position.
Be aware that, if excess force above the rated moment is applied, the guide can be damaged and its use life can be shortened. Therefore, carefully set the current with safety in mind.

When using slider type for the pressing operation, use setting to ensure that anti-moment generated by-push force does not exceed 80\% of catalog spec moment tolerance.

Example of calculations

When executing 30N pressing with RCP-3SA6C (Lead 12) type, and performing pressing at 30 N ,
the moment received by the guide is $\mathrm{Ma}=(47+50) \times 30$

$$
\begin{aligned}
& =2910(\mathrm{~N} \bullet \mathrm{~mm}) \\
& =2.91(\mathrm{~N} \cdot \mathrm{~m}) .
\end{aligned}
$$

The SA6C allowable load moment (Ma) is $4.31(\mathrm{~N} \bullet \mathrm{~m})$, 80% of which is 3.448 , which is greater than the actual moment load received by
the guide (2.91). Therefore, it can be decided that this moment load can be used.

Push force and current limit correlation graph C

 SA5C/SA6C type

SA4C type

${ }_{\text {Appenamex }} 65$

When using a table type for the pressing operation, limit the pressing current to prevent anti-moment generated by the push force from exceeding 80\% of the catalog spec rating for moment (Ma, Mb).
To calculate moment, use the guide moment action position shown in the figure below, and consider the amount of offset at the push force action position. Be aware that, if excess force above the rated moment is applied, the guide can be damaged and its use life can be shortened. Therefore, carefully set current with safety in mind.
TA3 $\square: \mathrm{h}=10.5 \mathrm{~mm}$
TA4 $\square \mathrm{h}=11.5 \mathrm{~mm}$
TA5 $\square \mathrm{h}=13.5 \mathrm{~mm}$
TA6 $\square \mathrm{h}=15.5 \mathrm{~mm}$
TA7 $\square: \mathrm{h}=17.5 \mathrm{~mm}$

When using a table type for the pressing operation, use setting to ensure that anti-moment generated by the push force does not exceed 80% of catalog spec moment tolerance.
Example of calculations:
With the RCP3-TA6C (Lead 12) type, using the position shown in the figure at the right, and pressing at 40N,
the moment received by the guide is $\mathrm{Ma}=(15.5+50) \times 40$

$$
\begin{aligned}
& =2620(\mathrm{~N} \bullet \mathrm{~mm}) \\
& =2.62(\mathrm{~N} \bullet \mathrm{~m})
\end{aligned}
$$

The TA6C allowable load moment (Ma) is $7.26(\mathrm{~N} \bullet \mathrm{~m})$,
80% of which is 5.968 , which is greater than the actual moment load received by *
the guide (2.62). Therefore, it can be decided that this moment load can be used.

Model Selection Reference (Push Force)

Selection Guide (Push Force and Electric Current Limitation Correlation Graph)

RCP2 Series

Slider Type

When using the slider type for the pressing operation, limit the pressing current to prevent anti-moment generated by the push force from exceeding 80% of the catalog spec rating for moment (Ma, Mb).
To calculate moment, use the guide moment action position shown in the figure below, and consider the amount of offset at the push force action position.
Be aware that, if excess force above the rated moment is applied, the guide can be damaged and its use life can be shortened. Therefore, carefully set the current with safety in mind.

SA5C: $\mathrm{h}=39 \mathrm{~mm}$
SA6C: $\mathrm{h}=40 \mathrm{~mm}$
SA7C: $\mathrm{h}=43 \mathrm{~mm}$
SS7C: $\mathrm{h}=36 \mathrm{~mm}$
SS8C: $\mathrm{h}=48 \mathrm{~mm}$

Example of calculations:
With the RCP2-SS7C type, and using the position in the figure at right for 100N pressing,
the moment received by the guide is $\mathrm{Ma}=(36+50) \times 100$

$$
\begin{aligned}
& =8600(\mathrm{~N} \bullet \mathrm{~mm}) \\
& =8.6(\mathrm{~N} \bullet \mathrm{~m}) .
\end{aligned}
$$

The SS rated moment is $\mathrm{Ma}=14.7(\mathrm{~N} \bullet \mathrm{~m})$
and $14.7 \times 0.8=11.76>8.6$, which means it is OK.

- Pressing operations cannot be
- Pressing operations cannot b.
perfomed for Belt type (BA6/BA7).
- Note: The movement speed during pressing is fixed at $20 \mathrm{~mm} / \mathrm{s}$.

Also, when pressing generates moment Mb , use the overhang calculation to similarly confirm that the moment is within 80% of the rated moment

Push force and current limit correlation graph

SA7C type

When performing a pressing operation, select a model which has desired push force within an area indicated by the red line in the graph below.
(The graph makes allowance for efficiency reduction due to change due to wear.
$\left[\begin{array}{l}\text { Movement speed during pressing } \\ \text { operation is fixed at } 5 \mathrm{~mm} / \mathrm{s} \text {. }\end{array}\right.$

RA2AC/RA2AR Lead 2

RA2BC/RA2BR Lead 2

RA2BC/RA2BR Lead 4

RA2BC/RA2BR Lead 6

Model Selection Reference (Push Force)

Selection Guide (Push Force and Electric Current Limitation Correlation Graph)

RCP2 Series

Rod Type

The push force during the pressing operation can be freely changed by changing the controller current limit value.
The maximum push force changes according to the type of device, so please select the push force you need from the table below.

RA2C Type

RA3C/RGD3C
*With the RA2C type, the maximum push force limit is set according to the stroke.
$25 \cdot 50$ stroke : 100N

75 stroke	$:$	$70 N$
100 stroke	$:$	$55 N$

RA4C/RGS4C/RGD4C/SRA4R

```
(ASC/RGS6C/RGD6C
```


Note: In the graph above, the number after the type is the lead number.

Selection Guide (Push Force and Electric Current Limitation Correlation Graph)

RCP2 Series

Rod Thrust type

The push force during the pressing operation can be freely changed by changing the controller current limit value.
The maximum push force changes according to the type of device, so please select the push force you need from the table below.

Caution for Use

- The push force and current limit correlation figures are given as standard. Actual figures will slightly differ.
- If the current limit is low, the push force may vary. Therefore, for Lead 10 and Lead 5, make the force $\mathbf{2 0 \%}$ or more higher; 35% or higher for Lead 2.5.
- The movement speed in a pressing operation is fixed at $10 \mathrm{~mm} / \mathrm{s}$. Note that in the graph below, $10 \mathrm{~mm} / \mathrm{s}$ was the speed in the pressing operation. So, if the speed changes, the push force will drop. (Consult with us if you need to change the pressing speed.)
- When the pressing speed has been performed with the moving speed $10 \mathrm{~mm} / \mathrm{s}$ or less before pressing is started, the pressing speed is the same as the moving speed.

RA10C Type

Note:
Use the standards in the table below for the maximum number of pressing operations for each type of lead, for maximum push force, and (each) $1-\mathrm{mm}$ pressing movement.

Lead (Type)	2.5	5	10
Number of Pushes	1.4 million	25 million	157.6 million

* The maximum number of pushes will vary according to shock, vibration and other operating conditions. The figures shown at left are for conditions with no shock or vibration.

Selection Guide (Push Force / Continuous Operation Thrust)

RCS2 Series

Rod Ultra-high thrust type

The following three conditions must be met when using this device.
Condition 1: The pushing time must be less than the time determined.
Condition 2: One cycle of continuous thrust must be less than the rated thrust for an ultra-high thrust actuator.
Condition 3: There must be one pushing operation in one cycle.

Selection Method

Condition 1. Pushing Time
The maximum pressing time for each pressing order must be determined as shown in the table below. The pressing time used must be less than the time indicated in the table below.
Actuator malfunction could result if the process is used without adhering to the table below.
Table 1

Condition 2. Continuous Operation Thrust

Confirm that 1 cycle of continuous operation thrust Ft, based on a consideration of load and duty, is less than that of the rated thrust for a ultra-high-thrust actuator.

Note that there must one pushing operation within one cycle.

$$
\begin{array}{ll}
\mathrm{F}_{1 \mathrm{a}}: \text { Thrust1 needed for acceleration } & \mathrm{F}_{2 \mathrm{a}}: \text { Thrust2 needed for acceleration } \\
\mathrm{F}_{18}: \text { Thrust1 needed for motion at constant speed } & \mathrm{F}_{2 f}: \text { Thrust2 needed for motion at constant speed } \\
\mathrm{F}_{1 \mathrm{~d}}: \text { Thrust1 needed for deceleration } & \mathrm{F}_{2 \mathrm{~d}}: \text { Thrust2 needed for deceleration } \\
\mathrm{F}_{0}: \text { Thrust needed for pushing } & \mathrm{F}_{\mathrm{w}}: \text { Thrust needed for waiting }
\end{array}
$$

Use the equation below to calculate the continuous operation thrust Ft for one cycle.

Since $F_{1 a} / F_{2 a} / F_{1 d} / F_{2 d}$ will change with the direction of motion, use the equations below.

Horizontal use (for both accel./decel.)
Vertical use, downward acceleration Vertical use, constant downward speed Vertical use, downward deceleration Vertical use, upward acceleration Vertical use, constant upward motion Vertical use, upward deceleration Vertical use, waiting

$$
\begin{aligned}
& F_{1 \mathrm{a}}=\mathrm{F}_{1 \mathrm{~d}}=\mathrm{F}_{2 \mathrm{a}}=\mathrm{F}_{2 \mathrm{~d}}=(\mathrm{M}+\mathrm{m}) \times \mathrm{d} \\
& \mathrm{~F}_{1 \mathrm{a}}=(\mathrm{M}+\mathrm{m}) \times 9.8-(\mathrm{M}+\mathrm{m}) \times \mathrm{d} \\
& \mathrm{~F}_{1 \mathrm{f}}=(\mathrm{M}+\mathrm{m}) \times 9.8+\alpha\left({ }^{*} 1\right) \\
& \mathrm{F}_{1 \mathrm{~d}}=(\mathrm{M}+\mathrm{m}) \times 9.8+(\mathrm{M}+\mathrm{m}) \times \mathrm{d} \\
& F_{2 \mathrm{a}}=(\mathrm{M}+\mathrm{m}) \times 9.8+(\mathrm{M}+\mathrm{m}) \times \mathrm{d} \\
& \mathrm{~F}_{2 \mathrm{f}}=(\mathrm{M}+\mathrm{m}) \times 9.8+\alpha\left({ }^{*}\right) \\
& F_{2 \mathrm{~d}}=(\mathrm{M}+\mathrm{m}) \times 9.8-(\mathrm{M}+\mathrm{m}) \cdot \mathrm{d} \\
& F_{\mathrm{w}}=(\mathrm{M}+\mathrm{m}) \times 9.8
\end{aligned}
$$

M : Moveable weight (kg)
m : Loaded weight (kg)
d : Accel./decel. ($\mathrm{m} / \mathrm{s}^{2}$)
α : Thrust (taking into account the travel resistance by the external guide.)
*1 If an external guide is attached, it is necessary to consider travel resistance.

The method of calculating $t \square a$, which is the acceleration duration, will vary for (1) trapezoidal pattern vs. (2) triangular patter movements. Whether a movement pattern is trapezoidal or triangular can be determined by whether the peak speed reached after accelerating over a distance at a specified rate is greater than or less than the specified speed.
Peak Speed (Vmax) $=\sqrt{\text { Distance Moved (m) } \times \text { Set Acceleration }\left(m / s^{2}\right)}$
Set Speed < Peak Speed \rightarrow (1) Trapezoidal Pattern
Set Speed $>$ Peak Speed \rightarrow (2) Triangular Pattern
(1) For trapezoidal pattern,
$\mathrm{t} \square \mathrm{a}=\mathrm{Vs} / \mathrm{a}$ Vs : Set speed $(\mathrm{m} / \mathrm{s})$ a : Ordered acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
(2) For triangular pattern

$\mathrm{t} \square \mathrm{a}=\mathrm{Vt} / \mathrm{a} \quad \mathrm{Vt}:$ Peak speed (mss) a : Ordered acceleration ($\mathrm{m} / \mathrm{s}^{2}$)
(2) Triangular Pattern

$\mathrm{t} \square \mathrm{f}$ is the time taken to move at constant speed. You can calculate this time by computing the distance moved at constant speed. $\mathrm{t} \square \mathrm{f}=\mathrm{Lc} / \mathrm{V} \quad$ Lc : Distance moved at constant speed (m) V: Commanded acceleration (mss)

* Distance moved at constant speed $=$ total distance - accelerated distance - decelerated distance \quad Accel. $/$ decel. distance $=V^{2} / 2 a$
$t \square d$ is the deceleration time. This is the same as the acceleration time, if the magnitude of acceleration and deceleration are the same. $t \square d=V / a \quad V$: Set speed (trapezoidal pattern) or Peak speed (triangular pattern)(m/s) a: Commanded deceleration (mss ${ }^{2}$)

If the continuous operation thrust Ft by this method is less than the rated thrust, then operation is possible.

Rated thrust for ultra-high thrust actuator with 1.25 lead: 10200 N

Operation is possible if both of the above operating conditions 1 and 2 are met.
If either condition cannot be met, make adjustments such as shortening the pushing operation time or decreasing the duty.

Sample Problem.

Selection Guide (Push Force / Continuous Operation Thrust)

Using the selection method:

Condition 1. Confirm push operation time

By comparing our push time of 3 seconds with the maximum push time for a push order value of 200%, which is 13 seconds (see Table 1 on page A-71), it is clear that the pressing time is acceptable.

Condition 2. Calculate the continuous operation thrust

Substitute the above operational pattern to the previously mentioned equation for continuous operation thrust.

At this point, by looking at the motion pattern for $\mathrm{t} 1 \mathrm{a} / \mathrm{t} 1 \mathrm{~d} / \mathrm{t} 2 \mathrm{a} / \mathrm{t} 2 \mathrm{~d}$, the peak speed $(\mathrm{Vmax})=\sqrt{0.05 \times 0.098} \rightarrow 0.07 \mathrm{~m} / \mathrm{s}$, which is greater that the set speed, $62 \mathrm{~mm} / \mathrm{s}(0.06 \mathrm{~m} / \mathrm{s})$. Hence this is a trapezoidal pattern.

Hence, $\mathrm{t}_{1 \mathrm{a}} / \mathrm{t}_{1 \mathrm{~d}} / \mathrm{t}_{2 \mathrm{a}} / \mathrm{t}_{2 \mathrm{~d}}=0.062 \div 0.098 \rightarrow 0.63 \mathrm{~s}$

Next, calculate $t_{1 f} / t_{2 f}$:
Distance moved at constant speed $=0.05-\{(0.062 \times 0.062) \div(2 \times 0.098)\} \times 2 \rightarrow 0.011 \mathrm{~m}$, so $\mathrm{t}_{11} / \mathrm{t}_{2 \mathrm{~A}}=0.011 \div 0.062 \rightarrow 0.17 \mathrm{~s}$.
Also, calculating the F1a/F1f/F1d/F2a/F2f/F2d from the equations yields the following:
$F_{1 \mathrm{a}}=F_{2 d}=(9+100) \times 9.8-(9+100) \times 0.098 \rightarrow 1058 \mathrm{~N}$
$F_{1 d}=F_{2 a}=(9+100) \times 9.8+(9+100) \times 0.098 \rightarrow 1079 \mathrm{~N}$
$F_{1 f}=F_{2 f}=f_{w}=(9+100) \times 9.8 \rightarrow 1068 \mathrm{~N}$
By substituting these values to the continuous operation thrust equation,
$F_{t}=\frac{\sqrt{\{(1058 \times 1058) \times 0.63+(1068 \times 1068) \times 0.17+(1079 \times 1079) \times 0.63+(19600 \times 19600) \times 3+(1079 \times 1079) \times 0.63}}{+(1068 \times 1068) \times 0.17+(1058 \times 1058) \times 0.63+(1068 \times 1068) \times 2\} \div(0.63+0.17+0.63+3+0.63+0.17+0.63+2) \rightarrow 12113 N}$
Since this exceeds the rated thrust for the 2-ton ultra-thrusf actuator, which is $\mathbf{1 0 2 0 0 N}$, operation with this pattern is not possible.
In response, let us increase the wait time. (i.e. decreasethe duty)
Recalculating with $\mathrm{tw}=6.12 \mathrm{~s}(\mathrm{t}=12 \mathrm{~s})$ will change the thrust to $\mathrm{F}_{\mathrm{t}}=9814 \mathrm{~N}$, making it operable.

Information on Moment Selection

The ultra-high thrust actuator can apply a load on the rod within the range of conditions calculated below.

```
M+T\leqq120(N | m)
Moment Load M = Wg\timesL2
Load Torque T=Wg\timesL1
```

* $\mathrm{g}=$ Gravitational acceleration 9.8
* L1 = Distance from the center of rod to the center of gravity of the work piece
* L2 = Distance from the actuator mounting surface to the center of gravity of the work piece +0.07
If the above condition is not met, consider installing an external guide, or the like, so that the load is not exerted on the rod.

Selection Guide (Gripping Force)

RCP2 Series

Gripper Slide Type

Step 1 Check necessary gripping force and transportable work part weight

Step 2 Check distance to gripping point

Step 3 Check external force applied to the finger attachment (claw)

Step 1 Check necessary gripping force and transportable work part weight

When gripping with frictional force, calculate the necessary gripping force as shown below.

(1) Normal transportation

F : Gripping force [N] \qquad Sum of push forces
μ : Coefficient of static friction between the finger attachment and the work part
m : Work part weight [Kg]
$\mathrm{g}:$ Gravitational acceleration $\left[=9.8 \mathrm{~m} / \mathrm{s}^{2}\right]$
A condition in which a work part does not drop when the work part is gripped statistically:

$$
\begin{aligned}
& F \mu>W \\
& F>\frac{m g}{\mu}
\end{aligned}
$$

Necessary gripping force as the recommended safety factor of 2 in normal transportation:

$$
F>\frac{m g}{\mu} \times 2 \text { (safety factor) }
$$

When the friction coefficient μ is-between 0.1 and 0.2 :

$$
F>\frac{\mathrm{mg}}{0.1 \sim 0.2} \times 2=(10-20) \times \mathrm{mg}
$$

* As the Coefficient of static friction increases, the work part weight also increases.

Select a model which can achieve the gripping force of 10 to 20 times or more.

Normal work part transportation		
Necessary gripping force	\rightarrow	10 to 20 times the work part
weight or more		
Transportable work part weight	\rightarrowOne-tenth to one-twentieth or less of gripping force	

(2) When remarkable acceleration, deceleration and/or impact occur at work part transportation

Stronger inertial force is applied to a work part by gravity. In this case, consider the sufficient safety rate when selecting a model.
\(\left.\begin{array}{lll}When remarkable acceleration, deceleration and/or impact occur

Necessary gripping force \& \rightarrow \quad 30 to 50 times the work part

weight or more\end{array}\right]\)| One-thirtieth to one-fiftieth or |
| :--- |
| less of gripping force |

Selection Guide (Gripping Force)

Step 2 Distance between finger attachment (claw) to gripping point

Keep the distance (L, H) from the finger (claw) mounting surface to the gripping point within the following range. If such distance does not fall within such range, excessive moment applies to the finger sliding parts and internal mechanism and the service life may be affected.

- 2-Finger gripper

- 3-Finger gripper

Keep the fingers mounted to the actuator as small and light as possible, even if the distance to the gripping point falls within a restricted range.
There are cases in which performance will be decreased or the guides will be adversely affected by inertial forces or bending moment if the finger is too long or too heavy.

Step 3 Checking external force applied to finger

(1) Allowable vertical load

Confirm that the vertical load applied to each finger is the allowable load or less.
(2) Allowable load moment

Calculate Ma and Mc using L1 and Mb using L2. Confirm that the moment applied to each finger is the maximum allowable load moment or less.

Allowable external force when the moment load is applied to each claw:

Allowable load $F(N)>\frac{M \text { (Maximum allowable moment }(N \bullet m)}{L(\mathrm{~mm}) \times 10^{-3}}$
Calculate the allowable load $F(N)$ using both of L1 and L2.
Confirm that the external force applied to finger is the
 calculated allowable load $\mathrm{F}(\mathrm{N})$ (L1 or L2, whichever is smaller) or less.

Model	Allowable	Maximum allowable load moment (N•m)		
		Ma	Mb	Mc
RCP2-GRSS	60	0.5	0.5	1.5
RCP2-GRS	253	6.3	6.3	7.0
RCP2-GRM	253	6.3	6.3	8.3
RCP2-GRST	275	2.93	2.93	5.0
RCP2-GR3SS	169	3.8	3.8	3.0
RCP2-GR3SM	253	6.3	6.3	5.7

1. The allowable value ky above shows a static value.
2. The allowable value per finger is shown.

* Finger weight and work part weight are also a part of the external force. Centrifugal force when the gripper rotated gripping a work part and inertial force due to acceleration or deceleration when moving are also the external force applied to the finger.

Selection Guide (Gripping Force)

RCP2 Series Gripper Lever Type

Step 1 Check necessary gripping force and

 transportable work part weight
Step 2

Check moment of inertia of the finger attachment (claw)

Step 3

Check external force applied to the finger

Step 1
Check the necessary gripping force and transportable work part weight

Like Step 1 of Slide type, calculate the necessary gripping force and confirm that the gripping force meets conditions. Calculate it referring to "Paragraph 5.3 Adjustment of Gripping Force", effective gripping force by gripping point.

Normal work transportation
Necessary gripping force $\rightarrow 10$ to 20 times the work part weight or more
Transportable work part weight \rightarrow One-tenth to one-twentieth or less of gripping force

When remarkable acceleration, deceleration and/or impact occur
Necessary gripping force $\rightarrow 30$ to 50 times the work part weight or more
Transportable work part weight \rightarrow One-thirtiethat one-fiftieth or less of gripping force

Step 2 Checking moment of inertia of the finger attachment (claw)

Confirm that all moments of inertia around the Z axis (fulcrum) of the finger attachment (claw) fall within an allowable area. Depending on the configuration and/or shape of the finger, divide it into several elements when calculating. For your reference, an example of calculation by dividing into two elements is shown below.
(1) Moment of inertia around Z_{1} axis (the center of gravity of A) (section A)
$\mathrm{m} 1 \quad$: Weight of $\mathrm{A}[\mathrm{Kg}]$
$\mathrm{a}, \mathrm{b}, \mathrm{c}$: Dimension of Section A [mm]
$\mathrm{m} 1[\mathrm{Kg}]=\mathrm{a} 1 \times \mathrm{b} 1 \times \mathrm{c} 1 \times$ specific gravity $\times 10^{-6}$
$\mathrm{IZ} 1\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]=\frac{\mathrm{m} 1\left(\mathrm{a} 1^{2}+\mathrm{b} 1^{2}\right)}{12} \times 10^{-6}$

(2) Moment of inertia around the \mathbf{Z}_{2} axis (the center of gravity of B) (section B)

$$
\mathrm{I} \mathrm{Z}_{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]=\frac{\mathrm{m} 2\left(\mathrm{a} 1^{2}+\mathrm{b} 1^{2}\right)}{12} \times 10^{-6}
$$

(3) All moments of inertia around the Z axis (fulcrum)

R1 : Distance from the center of gravity of A to the finger opening/closing fulcrum [mm]
R2 : Distance from the center of gravity of B to the finger opening/closing fulcrum [mm]
$I\left[k g \cdot \mathrm{~m}^{2}\right]=\left(\mathrm{Iz} 1+\mathrm{m} 1 \mathrm{R}_{1}{ }^{2}\right)+\left(\mathrm{Iz2}+\mathrm{m} 2 \mathrm{R}^{2}\right)$

Model	Allowable moment of inertia $\left[\mathrm{kg}^{\bullet}{ }^{2}\right]$	Weight (Reference) [kg]
RCP2-GRLS	1.5×10^{-4}	0.07
RCP2-GR3LS	3.0×10^{-4}	0.15
RCP2-GR3LM	9.0×10^{-4}	0.5

Step 3 Checking external force applied to the finger

(1) Allowable load torque

Confirm that the load torque applied to the finger is the maximum allowable load torque or less.
The load torque is calculated by finger and work part weight as stated below.
m1 : Work part weight
R1 : Distance from the center of gravity of work part to the finger opening/closing fulcrum
m2 : Claw weight
R2 : Distance from the center of gravity of the claw to the finger opening/closing fulcrum
$T=\left(W_{1} \times R_{1}\right)+\left(W_{2} \times R_{2}\right)+($ other load torque $)$

$$
=(m 1 g \times R 1)+(m 2 g \times R 2)+(\text { other load torque })
$$

* Centrifugal force when the gripper rotated gripping a work part and inertial force due to acceleration or deceleration when moving horizontally are also the load torque applied to the finger. If applicable, confirm that the total torque including the torque above is the maximum allowable load torque or less.

(2) Allowable thrust load

Confirm that the thrust load of finger opening/closing the axis is the allowable load or less.

$$
\begin{aligned}
\mathrm{F} & =\mathrm{W} 1+\mathrm{W} 2+\text { (other thrust load) } \\
& =\mathrm{m} 1 \mathrm{~g}+\mathrm{m} 2 \mathrm{~g}+(\text { other thrust load })
\end{aligned}
$$

Model	Maximum allowable load torque $T[\mathrm{~N} \cdot \mathrm{~m}]$	Allowable thrust load $\mathrm{F}[\mathrm{N}]$
RCP2-GRLS	0.05	15
RCP2-GR3LS	0.15	-
RCP2-GR3LM	0.4	-

Rotary Type Technical Materials

Selection Guide

Check the following two points to confirm whether the ROBO Cylinder is compatible with your desired service conditions.

1 Inertial Moment

Inertial moment expresses the amount of inertia in a rotationa motion, and corresponds to weight for linear motion.
The greater the inertial moment, the more difficult it is for that object to move and stop.
In other words, when choosing a rotary-type unit, a factor in that selection is whether or not it is possible to control the inertial moment of the object being rotated.
Inertial moment differs with the weight and shape of the object, but refer to the calculation formula in the typical example illustrated on the right.
The allowable inertial moment value for a ROBO Rotary is expressed as load inertia.
A ROBO Rotary can be used if the calculated inertial moment is less than its load inertia.

Load Moment

If the inertial moment is a controllable (electrical) guide, the load moment is a guide for the limit to forced (mechanical) use.
Using the actuator body end of the output shaft mounting base as the reference position for moment, check whether the load moment exerted on the output axis is within the load moment tolerances in the catalog.
Use in excess of the allowable load moment may cause damage and shortened service life.

Precautions regarding range of motion and home-return

Please note that, when RCS2-RT6/RT6R/RT7R performs homereturn, there are cases in which the direction or rotation in the return-home operation will differ depending on the stopping position of the axis.
In the RCS2-RT6/RT6R/RT7R home-return operation, the axis turns and the home-return sensor detects, and the home-return is completed at the position where the Z-phase is detected as inverted. At this time, the axis rotates in the counter-clockwise direction ${ }^{(1)}$, seen from the direction of the axis, and rotation stops when the sensor detection is inverted (2) and the Z-phase is detected (3). (See Figure 1)
However, if the axis is detected by the sensor when home-return begins, it rotates in the clockwise direction from that position (4) and stops when the Z-phase is detected (5).
(Figure 2)
The range of operation of the ROBO Rotary is 300 degress, but since there is no stopper, there are cases in which the range of operation is exceeded when the axis is manually turned with the servo OFF, etc.
Please note that there are cases where the sensor will be detected when the range of operation has been exceeded.

Guide-Equipped Type RCA2/ERC2/RCP2/RCA/RCS2

Allowable Rotating Torque

The allowable torque for each model is as shown below.
When rotational torque is exerted, use within the range of the values below. Further, single-guide types cannot be subjected to rotational torque.

RCA2-SD3N Type

ERC2-RGD6C Type
■ Double-guide

RCA / RCS2-RGD3 \square Type

■ Double-guide

Model Selection Reference (Guide)

Relationship Between Allowable Load at Tip \& Running Service Life
The greater the load at the guide tip, the shorter the running service life. Select the appropriate model, considering balance between load and service life.

Single-guide

Double-guide

Model Selection Reference (Guide)

Radial Load \& Tip Deflection

The graph below shows the correlation between the load exerted at the guide tip and the amount of deflection generated.

Single-guide

RCS2-RGS4D Type

Double－guide

RCA2－SD3N Type

－Double－Guide＜Horizontal＞Specification

RCA2－SD4N Type
■Double－Guide＜Vertical＞Specification

RCA2－SD4N Type

■Double－Guide〈Horizontal〉Specification

Appendix：－ 85
Technical Reference／Information

ERC2-RGD7C Type
■Double-Guide<Vertical»Specification

RCA / RCS-KิGD3 Type
 ■Double-Guide\&Vertical>Specification

RCS2-SRGD7BD Type
■Double-Guide <Horizontal>Specification

RCP2-RGD4C Type

RCP2-SRGD4R Type

RCS2-SRGD7BD Type
■Double-Guide <Vertical>Specification

RCP2-RGA4 Type

-Double-Guide <Vertical> Specification

Flat Type F5D Technical Materials

Flat Type (F5D) Moment, load capacity

The direction of the moment in the flat type is as shown in the figure below.

The points of moment application in the Ma and Mb directions are as shown below.

F5D

Be careful that the load exerted on the plate tip does not exceed the Ma moment when using a flat type horizontally.
$\square)$
Refer to the table below for the allowable tip loads calculated from the Ma moment for each stroke.

Work point

Previous Model Conversion Table [ERC, RCP2, RCP2CR, RCP2W]

Previous Product Model				New Product Model	Note
Series	Model	Model		Model	
ERC	RA54	ERC-RA54-I-PM-(3)-(4)-5	\rightarrow	ERC2-RA6C-I-PM-(3)-(4)-NP-(5)	
	RA54GD	ERC-RA54GD-I-PM-(3)-(4)-(5)	\rightarrow	ERC2-RGD6C-I-PM-(3)-(4)-NP-(5)	
	RA54GS	ERC-RA54GS-I-PM-(3)-(4)-(5)	\rightarrow	ERC2-RGS6C-I-PM-(3)-(4)-NP-(5)	
	RA64	ERC-RA64-I-PM-(3)-(4)-(5)	\rightarrow	ERC2-RA7C-I-PM-(3)-(4)-NP-(5)	
	RA64GD	ERC-RA64GD-I-PM-(3)-(4)-5	\rightarrow	ERC2-RGD7C-I-PM-(3)-(4)-NP-5	
	RA64GS	ERC-RA64GS-I-PM-(3)-(4)-(5)	\rightarrow	ERC2-RGS7C-I-PM-(3)-(4)-NP-(5)	
	SA6	ERC-SA6-I-PM-(3)-(4)-(5)	\rightarrow	ERC2-SA6C-I-PM-(3)-(4)-NP-(5)	
	SA7	ERC-SA7-I-PM-(3)-(4)-(5)	\rightarrow	ERC2-SA7C-I-PM-(3)-(4)-NP-(5)	
RCP2	BA6	RCP2-BA6-I-PM-54-(4)-P1-5	\rightarrow	RCP2-BA6-I-42P-54-4)-P1-5	
		RCP2-BA6-A-PM-54-(4)-P1-5	\rightarrow	RCP2-BA6-I-42P-54-4)-P1-5	For use with Simple Absolute unit
	BA6U	RCP2-BA6U-I-PM-54-(4)-P1-5	\rightarrow	RCP2-BA6U-I-42P-54-(4)-P1-5	
		RCP2-BA6U-A-PM-54-(4)-P1-(5)	\rightarrow	RCP2-BA6U-I-42P-54-4)-P1-(5)	For use with Simple Absolute unit
	BA7	RCP2-BA7-I-PM-54-(4)-P1-5	\rightarrow	RCP2-BA7-I-42P-54-4)-P1-5	
		RCP2-BA7-A-PM-54-(4)-P1-5	\rightarrow	RCP2-BA7-I-42P-54-4)-P1-5	For use with Simple Absolute unit
	BA7U	RCP2-BA7U-I-PM-54-(4)-P1-5	\rightarrow	RCP2-BA7U-1-42P-54-(4)-P1-(5)	
		RCP2-BA7U-A-PM-54-4)-P1-5	\rightarrow	RCP2-BA7U-1-42P-54-(4)-P1-5	For use with Simple Absolute unit
	GRS	RCP2-GRS-I-PM-1-10-P1-5	\rightarrow	RCP2-GRS-1-20P-1-10-P1-5	
	GRM	RCP2-GRM-I-PM-1-14-P1-5	\rightarrow	RCP2-GRM-I-28P-1-14-P1-5	
	GR3LS	RCP2-GR3LS-I-PM-30-1X-P1-5	\rightarrow	RCP2-GR3LS-I-28P-30-19-P1-5	
	GR3LM	RCP2-GR3LM-I-PM-30-1X-P1-5	\rightarrow	BCP2-GR3LM-I-42P-30-19-P1-5	
	GR3SS	RCP2-GR3SS-I-PM-30-10-P1-5		RCP2-GR3SS-I-28P-30-10-P1-5	
	GR3SM	RCP2-GR3SM-I-PM-30-14-P1-5	\rightarrow	RCP2-GR3SM-I-42P-30-14-P1-5	
	HSM	RCP2-HSM-I-PM-30-4)-P1-5	\rightarrow	RCP2-HS8C-I-86P-(3)-(4)-P2-(5)	
	HSMR	RCP2-HSMR-I-PM-30-4)-Pt-5	\rightarrow	RCP2-HS8R-I-86P-(3)-(4)-P2-(5)	
	RFA	RCP2-RFA-I-PM-(3)-4)-P1-5	\rightarrow	RCP2-RA10C-I-86P-(3)-(4)-P2-(5)	
	RFW	RCP2-RFW-I-PM-(3)-4-P1-(5)	\rightarrow	RCP2W-RA10C-I-86P-(3)-(4)-P2-5	
	RMA	RCP2-RMA-I-PM- 3-4)-P1-5	\rightarrow	RCP2-RA6C-I-56P-(3)-(4)-P1-5	
		RCP2-RMA-A-PM-(3)-(4)-P1-5	\rightarrow	RCP2-RA6C-I-56P-(3)-(4)-P1-(5)	For use with Simple Absolute unit
	RMGD	RCP2-RMGD-1-PM-(3)-(4)-P1-(5)	\rightarrow	RCP2-RGD6C-I-56P-(3)-(4)-P1-5	
		RCP2-RMGD-A-PM-(3)-(4)-P1-5	\rightarrow	RCP2-RGD6C-I-56P-(3)-(4)-P1-(5)	For use with Simple Absolute unit
	RMGS	RCP2-RMGS-I-PM-(3)-(4)-P1-(5)	\rightarrow	RCP2-RGS6C-I-56P-(3)-(4)-P1-5	
		RCP2-RMGS-A-PM-(3)-(4)-P1-5	\rightarrow	RCP2-RGS6C-I-56P-(3)-4)-P1-5	For use with Simple Absolute unit
	RMW	RCP2-RMW-I-PM-(3)-(4)-P1-(5)	\rightarrow	RCP2W-RA6C-I-56P-(3)-(4)-P1-5	
		RCP2-RMW-A-PM-(3)-(4)-P1-5	\rightarrow	RCP2W-RA6C-I-56P-(3)-(4)-P1-5	For use with Simple Absolute unit
	RPA	RCP2-RPA-I-PM-1-4)-P1-5	\rightarrow	RCP2-RA2C-I-20P-1-(4)-P1-5	
	RSA	RCP2-RSA-I-PM-(3)-(4)-P1-(5)	\rightarrow	RCP2-RA4C-I-42P-(3)-(4)-P1-(5)	
		RCP2-RSA-A-PM-(3)-(4)-P1-5	\rightarrow	RCP2-RA4C-I-42P-(3)-(4)-P1-(5)	For use with Simple Absolute unit
	RSGD	RCP2-RSGD-I-PM-(3)-(4)-P1-5	\rightarrow	RCP2-RGD4C-I-42P-(3)-4-P1-5	
		RCP2-RSGD-A-PM-(3)-(4)-P1-5	\rightarrow	RCP2-RGD4C-I-42P-(3)-(4)-P1-5	For use with Simple Absolute unit
	RSGS	RCP2-RSGS-I-PM-(3)-(4)-P1-5	\rightarrow	RCP2-RGS4C-I-42P-(3)-(4)-P1-5	
		RCP2-RSGS-A-PM-(3)-(4)-P1-5	\rightarrow	RCP2-RGS4C-I-42P-(3)-(4)-P1-5	For use with Simple Absolute unit

[^2]| Previous Product Model | | | | New Product Model | Note |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Series | Model | Model | | Model | |
| RCP2 | RSW | RCP2-RSW-I-PM-(3)-(4)-P1-5 | \rightarrow | RCP2W-RA4C-I-42P-(3)-(4)-P1-5 | |
| | | RCP2-RSW-A-PM-(3)-(4)-P1-5 | \rightarrow | RCP2W-RA4C-I-42P-(3)-(4)-P1-5 | For use with Simple Absolute unit |
| | RTB | RCP2-RTB-I-PM-(3)-330-P1-5 | \rightarrow | RCP2-RTB-I-28P-(3)-330-P1-(5) | |
| | RTC | RCP2-RTC-I-PM-(3)-330-P1-5 | \rightarrow | RCP2-RTC-I-28P-(3)-330-P1-5 | |
| | RXA | RCP2-RXA-I-PM-(3)-(4)-P1-(5) | \rightarrow | RCP2-RA3C-I-28P-(3)-(4)-P1-5 | |
| | | RCP2-RXA-A-PM-(3)-(4)-P1-5 | \rightarrow | RCP2-RA3C-I-28P-(3)-(4)-P1-5 | For use with Simple |
| | RXGD | RCP2-RXGD-I-PM-(3)-(4)-P1-5 | \rightarrow | RCP2-RGD3C-I-28P-(3)-(4)-P1-5 | |
| | | RCP2-RXGD-A-PM-(3)-(4)-P1-5 | \rightarrow | RCP2-RGD3C-I-28P-(3)-(4)-P1-5 | For use with Simple Absolute unit |
| | SA5 | RCP2-SA5-I-PM-(3)-(4)-P1-(5) | \rightarrow | RCP2-SA5C-I-42P-(3)-(4)-P1-5 | |
| | | RCP2-SA5-A-PM-(3)-4)-P1-5 | \rightarrow | RCP2-SA5C-I-42P-(3)-4-P1-5 | For use with Simple Absolute unit |
| | SA5R | RCP2-SA5R-I-PM-(3)-(4)-P1-5 | \rightarrow | RCP2-SA5R-I-42P-(3)-(4)-R1-(5) | |
| | | RCP2-SA5R-A-PM-(3)-(4)-P1-5 | \rightarrow | RCP2-SA5R-I-42P-3)-(4)-P1-5 | For use with Simple Absolute unit |
| | SA6 | RCP2-SA6-I-PM-(3)-(4)-P1-5 | \rightarrow | RCP2-SA6C-I-42P-3-(4)-P1-5 | |
| | | RCP2-SA6-A-PM-(3)-(4)-P1-(5) | \rightarrow | RCP2-SA6C-I-42P-(3)-(4)-P1-5 | For use with Simple Absolute unit |
| | SA6R | RCP2-SA6R-I-PM-(3)-(4)-P1-5 | \rightarrow | RCP2-SA6R-1-42P-(3)-(4)-P1-5 | |
| | | RCP2-SA6R-A-PM-(3)-(4)-P1-5 | \rightarrow | RCP2-SA6R-1-42P-(3)-(4)-P1-5 | For use with Simple Absolute unit |
| | SA7 | RCP2-SA7-I-PM-(3)-(4)-P1-5 | \rightarrow | RCP2-SA7C-I-56P-(3)-(4)-P1-(5) | |
| | | RCP2-SA7-A-PM-(3)-4)-P1-(5) | \rightarrow | RCR2-SA7C-I-56P-(3)-(4)-P1-(5) | For use with Simple Absolute unit |
| | SA7R | RCP2-SA7R-I-PM-(3)-(4)-P1-5 | \rightarrow | RCP2-SA7R-I-56P-(3)-(4)-P1-5 | |
| | | RCP2-SA7R-A-PM-(3)-(4)-P1-5 | \rightarrow | RCP2-SA7R-I-56P-(3)-(4)-P1-5 | For use with Simple Absolute unit |
| | SS | RCP2-SS-I-PM-(3)-(4)-P1-5 | | RCP2-SS7C-I-42P-(3)-(4)-P1-(5) | |
| | | RCP2-SS-A-PM-(3)-(4)-P1-5 ${ }^{\text {(5) }}$ | \rightarrow | RCP2-SS7C-I-42P-(3)-4-P1-5 | For use with Simple Absolute unit |
| | SSR | RCP2-SSR-I-PM-(3)-(4)-P1-5 | \rightarrow | RCP2-SS7R-I-42P-(3)-(4)-P1-5 | |
| | | RCP2-SSR-A-PM-(3)-4)(PJ-5 | \rightarrow | RCP2-SS7R-I-42P-(3)-4)-P1-5 | For use with Simple Absolute unit |
| | SM | RCP2-SM-I-PM-(3)-(4)-P1-(5) | \rightarrow | RCP2-SS8C-I-56P-(3)-(4)-P1-(5) | |
| | | RCP2-SM-A-PM-3--4-P1-5 | \rightarrow | RCP2-SS8C-I-56P-(3)-(4)-P1-5 | For use with Simple Absolute unit |
| | SMR | RCP2-SMR-I-PM-3)-(4)-P1-5 | \rightarrow | RCP2-SS8R-I-56P-(3)-(4)-P1-5 | |
| | | RCP2-SMR-A-PM-(3)-(4)-P1-5 | \rightarrow | RCP2-SS8R-I-56P-(3)-(4)-P1-5 | For use with Simple Absolute unit |
| $\begin{aligned} & \mathrm{RCP2} \\ & \mathrm{CR} \end{aligned}$ | HSM | RCP2CR HSM-I-PM-30-4-P1-5 | \rightarrow | RCP2CR-HS8C-I-86P-30-(4)-P2-5 | |
| | SA5 | RGP2CR-SA5-I-PM-(3)-(4)-P1-5 | \rightarrow | RCP2CR-SA5C-I-42P-(3)-4)-P1-5 | |
| | | RCR2CR-SA5-A-PM-(3)-(4)-P1-5 | \rightarrow | RCP2CR-SA5C-I-42P-(3)-4)-P1-5 | For use with Simple Absolute unit |
| | SA6 | RCP2CR-SA6-I-PM-(3)-(4)-P1-5 | \rightarrow | RCP2CR-SA6C-I-42P-(3)-(4)-P1-5 | |
| | | RCP2CR-SA6-A-PM-(3)-(4)-P1-5 | \rightarrow | RCP2CR-SA6C-I-42P-(3)-4)-P1-5 | For use with Simple Absolute unit |
| | SA7 | RCP2CR-SA7-I-PM-(3)-(4)-P1-5 | \rightarrow | RCP2CR-SA7C-I-56P-(3)-4)-P1-5 | |
| | | RCP2CR-SA7-A-PM-(3)-(4)-P1-5 | \rightarrow | RCP2CR-SA7C-I-56P-(3)-(4)-P1-5 | For use with Simple Absolute unit |
| | SS | RCP2CR-SS-I-PM-(3)-(4)-P1-(5) | \rightarrow | RCP2CR-SS7C-I-42P-(3)-(4)-P1-5 | |
| | | RCP2CR-SS-A-PM-(3)-(4)-P1-5 | \rightarrow | RCP2CR-SS7C-I-42P-(3)-(4)-P1-5 | For use with Simple Absolute unit |
| | SM | RCP2CR-SM-I-PM-(3)-(4)-P1-(5) | \rightarrow | RCP2CR-SS8C-I-56P-(3)-(4)-P1-5 | |
| | | RCP2CR-SM-A-PM-(3)-(4)-P1-5 | \rightarrow | RCP2CR-SS8C-I-56P-(3)-(4)-P1-5 | For use with Simple Absolute unit |
| RCP2W | SA16 | RCP2W-SA16-I-PM-(3)-(4)-P1-5 | \rightarrow | RCP2W-SA16C-I-86P-(3)-(4)-P1-(5) | |

[^3]
Previous Model Conversion Table [RCS]

Previous Product Model				New Product Model	Note
Series	Model	Model		Model	
RCS	F45	RCS-F45-(1)-30-H-(4)-5	\rightarrow	N/A	
		RCS-F45-(1)-30-M-(4)-(5)	\rightarrow	N/A	
		RCS-F45-(1)-30-L-4)-5	\rightarrow	N/A	
	F55	RCS-F55-(1)-(2)-H-(4)-(5)	\rightarrow	RCS2-F5D-(1)-(2)-16-4)-T2 (T1)-5	
		RCS-F55-(1)-(2)-M-(4)-(5)	\rightarrow	RCS2-F5D-(1)-(2)-8-4)-T2 (T1)-5	
		RCS-F55-(1)-(2)-L-(4)-(5)	\rightarrow	RCS2-F5D-(1)-(2)-4-4)-T2 (T1)-(5)	
	G20	RCS-G20-I-60-5-4)-5	\rightarrow	RCS2-GR8-I-60-5-4)-T2 (T1)-5	
	RA35	RCS-RA35-I-20-GN-H-(4)-(5)	\rightarrow	(RCA-RA3C-I-20-10-(4)-A1-5)	Not compatible
		RCS-RA35-I-20-GN-M-(4)-(5)	\rightarrow	(RCA-RA3C-I-20-5-(4)-A1-5)	Not compatible
		RCS-RA35-I-20-GN-L-(4)-5	\rightarrow	(RCA-RA3C-I-20-2.5-4)-A1-5)	Not compatible
		RCS-RA35-I-20-GS-H-(4)-5	\rightarrow	(RCA-RGS3C-I-20-10-4)-A1-(5))	Not compatible
		RCS-RA35-I-20-GS-M-(4)-5	\rightarrow	(RCA-RGS3C-I-20-5-4)-A1-5)	Not compatible
		RCS-RA35-I-20-GS-L-(4)-(5)	\rightarrow	(RCA-RGS3C-I-20-2.5-4)-A1-5)	Not compatible
		RCS-RA35-I-20-GD-H-(4)-5	\rightarrow	(RCA-RGD3C-I-20-10-(4)-A1-5)	Not compatible
		RCS-RA35-I-20-GD-M-(4)-5	\rightarrow	(RCA-RGD3C-1-20-5-4)-A1-5)	Not compatible
		RCS-RA35-I-20-GD-L-(4)-(5)	\rightarrow	(RCA-RGD3C-4-20-2.5-4)-A1-5)	Not compatible
	RA35R	RCS-RA35R-I-20-GN-H-(4)-5	\rightarrow	(RCA-RA3R-I-20-10-(4)-A1-5)	Not compatible
		RCS-RA35R-I-20-GN-M-(4)-5	\rightarrow	(RCA-RA3R-I-20-5-4)-A1-5)	Not compatible
		RCS-RA35R-I-20-GN-L-(4)-5	\rightarrow	(RCA-RA3R-I-20-2.5-4)-A1-5)	Not compatible
	RA45	RCS-RA45-(1)-30-GN-H-(4)-5	\rightarrow	(RCA-RA4C-(1)-30-12-(4)-A1-(5)	Not compatible
		RCS-RA45-(1)-30-GN-M-(4)-5	\cdots	(RCA-RA4C-(1)-30-6-4)-A1-5)	Not compatible
		RCS-RA45-(1)-30-GN-L-(4)-(5)	\rightarrow	(RCA-RA4C-(1)-30-3-4)-A1-5)	Not compatible
		RCS-RA45-1)-30-GS-H-(4)-5)	\rightarrow	(RCA-RG3SC-(1)-30-12-(4)-A1-5)	Not compatible
		RCS-RA45-(1)-30-GS-M-(4)-5	\rightarrow	(RCA-RG3SC-1)-30-6-(4)-A1-5)	Not compatible
		RCS-RA45-(1)-30-GS-L (4)-5	\rightarrow	(RCA-RG3SC-(1)-30-3-4)-A1-5)	Not compatible
		RCS-RA45-(1)-30-GD-H-(4)-5	\rightarrow	(RCA-RGD4C-(1)-30-12-(4)-A1-5)	Not compatible
		RCS-RA45-(1)-30-GD-M-(4)-5	\rightarrow	(RCA-RGD4C-1)-30-6-(4)-A1-(5)	Not compatible
		RCS-RA45-(1)-30-GD-L-(4)-(5)	\rightarrow	(RCA-RGD4C-1)-30-3-(4)-A1-(5)	Not compatible
	RA45R	RCS-RA45B-(1)-30-GN-H-(4)-(5)	\rightarrow	(RCA-RA4R-(1)-30-12-(4)-A1-5)	Not compatible
		RCS-RA45R-(1)-30-GN-M-(4)-(5)	\rightarrow	(RCA-RA4R-1-30-6-4)-A1-5)	Not compatible
		RCS-RA45R-(1)-30-GN-L-(4)-5	\rightarrow	(RCA-RA4R-(1)-30-3-4)-A1-5)	Not compatible
	RA55	RCS-RA55-(1)-(2)-GN-H-(4)-(5)	\rightarrow	(RCS2-RA5C-(1)-(2)-16-(4)-T2 (T1)-5)	Not compatible
		RCS-RA55-(1)-(2)-GN-M-(4)-5	\rightarrow	(RCS2-RA5C-(1)-(2)-8-(4)-T2 (T1)-5)	Not compatible
		RCS-RA55-(1)-(2)-GN-L-(4)-5	\rightarrow	(RCS2-RA5C-(1)-(2)-4-(4)-T2 (T1)-5)	Not compatible
		RCS-RA55-(1)-(2)-GS-H-(4)-(5)	\rightarrow	(RCS2-RGS5C-(1)-(2)-16-44-T2 (T1)-5)	Not compatible
		RCS-RA55-(1)-(2)-GS-M-(4)-(5)	\rightarrow	(RCS2-RGS5C-(1)-(2)-8-4)-T2 (T1)-5)	Not compatible
		RCS-RA55-(1)-(2)-GS-L-(4)-5	\rightarrow	(RCS2-RGS5C-(1)-(2)-4-4)-T2 (T1)-5)	Not compatible
		RCS-RA55-(1)-(2)-GD-H-(4)-5	\rightarrow	(RCS2-RGD5C-(1)-(2)-16-4)-T2 (T1)-5)	Not compatible
		RCS-RA55-(1)-(2)-GD-M-(4)-5	\rightarrow	(RCS2-RGD5C-(1)-(2)-8-4)-T2 (T1)-5)	Not compatible
		RCS-RA55-(1)-(2)-GD-L-(4)-(5)	\rightarrow	(RCS2-RGD5C-(1)-(2)-4-(4)-T2 (T1)-5)	Not compatible
	RA55R	RCS-RA55R-(1)-60-GN-H-(4)-(5)	\rightarrow	(RCS2-RA5R-1)-60-16-4)-T2 (T1)-5)	Not compatible
		RCS-RA55R-(1)-60-GN-M-(4)-(5)	\rightarrow	(RCS2-RA5R-(1)-60-8-(4)-T2 (T1)-5)	Not compatible
		RCS-RA55R-(1)-60-GN-L-(4)-(5)	\rightarrow	(RCS2-RA5R-1)-60-4-4)-T2 (T1)-5)	Not compatible

[^4]Technical Reference/Information

Previous Product Model				New Product Model	Note
Series	Model	Model		Model	
RCS	RB7525	RCS-RB7525-I-60-口-H-(4)-5	\rightarrow	N/A	
		RCS-RB7525-I-60-口-M-(4)-(5)	\rightarrow	N/A	
	RB7530	RCS-RB7530-I-(2)-GN-H-(4)-(5)	\rightarrow	RCS2-SRA7BD-I-(2)-12-4)-T2 (T1)-5	
		RCS-RB7530-I-(2)-GN-M-(4)-(5)	\rightarrow	RCS2-SRA7BD-I-(2)-6-(4)-T2 (T1)-5	
		RCS-RB7530-I-(2)-GN-L-(4)-5	\rightarrow	RCS2-SRA7BD-I-(2)-3-4)-T2 (T1)-5	
		RCS-RB7530-I-(2)-GS-H-(4)-5	\rightarrow	RCS2-SRGS7BD-I-(2)-12-(4)-T2 (T1)-5	
		RCS-RB7530-I-(2)-GS-M-(4)-(5)	\rightarrow	RCS2-SRGS7BD-I-(2)-6-44-T2 (T1)-5	
		RCS-RB7530-I-(2)-GS-L-(4)-5	\rightarrow	RCS2-SRGS7BD-I-(2)-3-4)-T2 (T1)-5	
		RCS-RB7530-I-(2)-GD-H-(4)-(5)	\rightarrow	RCS2-SRGD7BD-I-2)-12-(4)-T2 (T1)-5	
		RCS-RB7530-I-(2)-GD-M-(4)-(5)	\rightarrow	RCS2-SRGD7BD-I-(2)-6-4)-T2 (T1)-5	
		RCS-RB7530-I-(2)-GD-L-(4)-(5)	\rightarrow	RCS2-SRGD7BD-I-(2)-3-4)-22 (T1)-5	
	RB7535	RCS-RB7535-I-(2)-GN-H-(4)-(5)	\rightarrow	RCS2-SRA7BD-I-2)-16-(4)-T2 (T1)-5	
		RCS-RB7535-I-(2)-GN-M-(4)-(5)	\rightarrow	RCS2-SRA7BD-1-2-8-4)-T2 (T1)-5	
		RCS-RB7535-I-(2)-GN-L-(4)-(5)	\rightarrow	RCS2-SRA7BD-1-(2)-4-4)-T2 (T1)-5	
		RCS-RB7535-I-(2)-GS-H-(4)-5	\rightarrow	RCS2-SRGS7BD-I-2-16-4)-T2 (T1)-5	
		RCS-RB7535-I-(2)-GS-M-(4)-(5)	\rightarrow	RCS2-SRGS7BD-I-(2)-8-4)-T2 (T1)-5	
		RCS-RB7535-I-(2)-GS-L-(4)-5	\rightarrow	RCS2-SRGS7BD-I-(2)-4-4)-T2 (T1)-5	
		RCS-RB7535-I-(2)-GD-H-(4)-5	\rightarrow	RCS2-SRGD7BD-I-2)-16-4)-T2 (T1)-5	
		RCS-RB7535-I-(2)-GD-M-(4)-(5)	\rightarrow	RCS2-SRGD7BD-I-(2)-8-4)-T2 (T1)-5	
		RCS-RB7535-I-(2)-GD-L-(4)-5	$+$	RCS2-SRGD7BD-I-(2)-4-4)-T2 (T1)-5	
	$\begin{aligned} & \text { R10 } \\ & \text { R20 } \\ & \text { R30 } \end{aligned}$	RCS-R10-I-60-18-300-5		RCS2-RT6-I-60-18-300-T2 (T1)-5)-L	
		RCS-R20-I-60-18-300-5	\rightarrow	RCS2-RT6R-I-60-18-300-T2 (T1)-5)-L	
		RCS-R30-I-60-4-300-5	\rightarrow	RCS2-RT7R-I-60-4-300-T2 (T1)-5)-L	
	SA4	RCS-SA4-1-20-H-4)-5	\rightarrow	RCA-SA4D-(1)-20-10-4)-A1-5	
		RCS-SA4- ${ }^{\text {1 }}$-20-M-(4)-5	\rightarrow	RCA-SA4D-1 -20-5-(4)-A1-5	
		RCS-SA4-(1-20-L-(4)-5	\rightarrow	RCA-SA4D-(1)-20-2.5-(4)-A1-5	
	SA5	RCS-SA5-(1)-20-H-(4)-5	\rightarrow	RCA-SA5D-(1)-20-12-(4)-A1-(5)	
		RCS-SA5-1)-20-M-(4)-5	\rightarrow	RCA-SA5D- 1 -20-6-(4)-A1-(5)	
		RCS-SA5-(4)-20-L-(4)-5	\rightarrow	RCA-SA5D-1 -20-3-(4)-A1-5	
	SA6	RGS-SA6-(1)-20-H-(4)-5	\rightarrow	RCA-SA6D-(1)-20-12-(4)-A1-5	
		RCS-SA6-(1)-20-M-(4)-5	\rightarrow	RCA-SA6D-1-20-6-(4)-A1-(5)	
		RCS-SA6-(1)-20-L-(4)-(5)	\rightarrow	RCA-SA6D-1 -20-3-(4)-A1-5	
	SS	RCS-SS-(1)-60-H-(4)-(5)	\rightarrow	RCS2-SS7C-(1)-60-12-(4)-T2 (T1)-5	
		RCS-SS-(1)-60-M-(4)-(5)	\rightarrow	RCS2-SS7C-(1)-60-6-4)-T2 (T1)-5	
	SSR	RCS-SSR-(1)-60-H-(4)-(5)	\rightarrow	RCS2-SS7R-(1)-60-12-(4)-T2 (T1)-5	
		RCS-SSR-(1)-60-M-(4)-5	\rightarrow	RCS2-SS7R-(1)-60-6-4)-T2 (T1)-5	
	SM	RCS-SM-(1)-(2)-H-(4)-(5)	\rightarrow	RCS2-SS8C-(1)-(2)-20-4)-T2 (T1)-(5)	
		RCS-SM-(1)-(2)-M-(4)-(5)	\rightarrow	RCS2-SS8C-(1)-(2)-10-4)-T2 (T1)-(5)	
	SMR	RCS-SMR-(1)-(2)-H-(4)-5	\rightarrow	RCS2-SS8R-(1)-(2)-20-4)-T2 (T1)-5	
		RCS-SMR-(1)-(2)-M-(4)-(5)	\rightarrow	RCS2-SS8R-(1)-(2)-10-4)-T2 (T1)-(5)	

[^5]

United States of America
IAI America, Inc.

Brazil

CBD Mecânica Industrial Ltda.
Rua José Tanoeiro, 261-Vila Monte Sion-08613-123-Suzano-Sâo Paulo-Brazil TEL 55-11-4748-4501 FAX

55-11-4748-4692

同圆

Europe

IAI Industrieroboter GmbH
Ober der Roth 4, D-65824 Schwalbach am Taunus, Germany

TEL	+49 (0) 6196-88950	FAX	+49 (0) 6196-889524
E-mai	info@iai-gmbh.de		

MEMO

Apopandx. 95

Appendix: - 97

Products Listed in the Catalogue

Appendix: - 99 Index

	CON-PD-M	(Touch panel teaching pendant)	497
	CON-PG-M-S	(Touch panel teaching pendant)	497
	CON-PT-M	(Touch panel teaching pendant)	$483 \cdot 497 \cdot 512 \cdot 523 \cdot 533 \cdot 543 \cdot 555$
	CON-T	(Teaching box)	$512 \cdot 523 \cdot 533 \cdot 543 \cdot 555$
[D]	DP-3	(Dummy plug)	$565 \cdot 575 \cdot 585$
[E]	ERC2- RA6C	(Actuator)	165
	ERC2-FT-RA6	(Foot bracket)	A-29
	ERC2-FT-RA7	(Foot bracket)	A-29
	ERC2-RA7C	(Actuator)	167
	ERC2-RGD6C	(Actuator)	173
	ERC2-RGD7C	(Actuator)	175
	ERC2-RGS6C	(Actuator)	169
	ERC2-RGS7C	(Actuator)	171
	ERC2-SA6C	(Actuator)	55
	ERC2-SA7C	(Actuator)	57
[F]	FB	(Flange bracket)	A-26
	FL	(Front flange bracket)	A-27
	FLR	(Rear flange bracket)	A-28
	FT	(Foot bracket)	, A-29
	FT2	(Foot bracket for right-side mounting)	A-31
	FT4	(Foot bracket for left-side mounting)	A-31
[G]	GS2	(Guide mounting direction)	A-32
	GS3	(Guide mounting direction)	A-32
	GS4	(Guide mounting direction)	A-32
[H]	HA	(For high acceleration/deceleration)	A-32
	HK-1	(Wall-mounting hook for CON-T)	$512 \cdot 523 \cdot 533 \cdot 543 \cdot 555 \cdot 565 \cdot 575 \cdot 585$
	HS	(Home sensor)	A-32
[I]	IA-101-XA-MW	(PC software)	598
	IA-101-X-MW	(PC software)	598
	IA-101-X-MW-J	(PC software)	$565 \cdot 575 \cdot 585$
	IA-101-X-USB	(PC software) ${ }^{\text {a }}$	$565 \cdot 575 \cdot 585$
	IA-101-X-USBMW	(PC software)	598
	IA-105-X-MW-A	(Expansion SIO board)	596
	IA-105-X-MW-B	(Expansion SIO board)	596
	IA-105-X-MW-C	(ExpansionSIO board)	596
	IA-CV-USB	(USB conversion adapter)	598
	IA-LB-TG	(TP adapter)	597
	IA-T-X	(Teaching box)	597
	IA-T-XD	(Teaching box)	597
	IA-XAB-BT	(Absolute data retention battery)	596
[J]	JB-1	(ROBONET communication connection board)	513
[K]	K2	(Connector cable outlet direction changed)	A-32
[L]	L	(Limit switch)	A-32
	LA	(Power-saving)	A-32
[M	MB	(Motor mounting side)	A-33
	MEC-AT-D	(DIN rail mounting bracket for MEC controller)	484
	ML	(Motor mounting side)	A-33
	MR	(Motor mounting side)	A-33
	MT	(Motor mounting side)	A-33
[N	NCO	(No cover)	A-33
	NJ	(Knuckle joint)	A-34
	NM	(Reversed-home)	A-33
[P]	PCON-ABU	(Simple absolute unit)	545
	PCON-C	(Controller)	525
	PCON-CG	(Controller)	525
	PCON-CY	(Controller)	525
	PCON-PL	(Controller)	525
	PCON-PO	(Controller)	525
	PCON-SE	(Controller)	525

PMEC-C	(Controller)	477
PP-1	(ROBONET power connection board)	513
PS-241	(24V power supply)	471
PS-242	(24V power supply)	471
PSEL-C	(Controller)	557
PSEP-C	(Controller)	487
PSEP-CW	(Controller)	487
PU-1	(Panel unit)	$565 \cdot 575 \cdot 585$

$[Q]$ QR (Clevis bracket) A-34
$[R]$ RABU (Simple absolute R unit) 511

RACON
(Simple absolute R unit) $\quad 511$

RCA2-GD3N
(Actuator) $\quad 189$

RCA2-GD4N
RCA2-GS3N
RCA2-GS4N
RCA2-RN3N
RCA2-RN4N
RCA2-RP3N
RCA2-RP4N
RCA2-SA3R
RCA2-SA4C
RCA2-SA4R
RCA2-SA5C
RCA2-SA5R
RCA2-SA6R
RCA2-SD3N
RCA2-SD4N
RCA2-TA4C
RCA2-TA4
RCA2-TA5R
RCA2-TA6C
RCA2-TA6
RCA2-TA7
RCA2-TC3N
RCA2-TC4N
RCA2-TF4N
RCA2-TW3N

RCA2-TW4N
RCA-A4R

RCA-A5R
RCA-A6R
RCACR-SA4C
RCACR-SA5C
RCACR-SA5D
RCACR-SA6C
RCACR-SA6D
RCA-FL-RA3
RCA-FLR-RA3
RCA-FLR-RA4
RCA-FL-RA3
RCA-FT-RA4
RCA-FT-RA4R
RCA-FT-SA4
RCA-FT-SA5
RCA-FT-SA6
RCA-NJ-RA3
RCA-NJ-RA4
RCA-QR-RA3
RCA-QR-RA4
RCA-RA3C
RCA-RA3D
RCA-RA3R
RCA-RA4D
RCA-RA4R
RCA-RGD3C
RCA-RGD3D
RCA-RGD3R
RCA-RGD4C
RCA-RGD4D
RCA-RGD4R

(Actuator)	191
(Actuator)	185
(Actuator)	187
Actuator)	177

Actuator) 179

(Actuator)	
(Actuator)	181

Actuator) 59

$\begin{array}{lr}\text { (Actuator) } & 71 \\ \text { (Actuator) } & 65 \\ \text { (Actuator) } & 73\end{array}$

(Actuator)	195
Actuator)	301

Actuator) 309

(Actuator)	303
(Actuator)	311

(Actuator)	305
(Actuator)	313
(Actuator)	307

$\begin{array}{lr}\text { (Actuator) } & 307 \\ \text { (Actuator) } & 315\end{array}$

(Actuator)	289
(Actuator)	291

| (Actuator) | 297 |
| :--- | ---: | ---: |
| Actuator) | 299 |

$\begin{array}{lr}\text { (Actuator) } & 293 \\ \text { (Actuator) } & 295 \\ \text { (Actuator) } & 317\end{array}$
$\begin{array}{lr}\text { (Actuator) } & 319 \\ \text { (Actuator) } & 321\end{array}$
$\begin{array}{lr}\text { (Actuatgr) } & 321 \\ \text { (Actuator) } & 415 \\ \text { (Actuator) } & 417\end{array}$
$\begin{array}{lr}\text { (Actuator) } & 421 \\ \text { (Actuator) } & 419\end{array}$
$\begin{array}{lr}\text { (Actuator) } & 419 \\ \text { (Actuator) } & 423 \\ \text { (Front flange bracket) } & \text { A-27•A-29 }\end{array}$
$\begin{array}{lr}\text { (Front flange bracket) } & \text { A-27•A-29 } \\ \text { (Rear flange bracket) } & \text { A-28 }\end{array}$
(Rear flange bracket) A-29
$\begin{array}{ll}\text { (Foot bracket) } & \text { A-30 } \\ \text { (Foot bracket) } & \text { A-30 }\end{array}$
$\begin{array}{ll}\text { (Foot bracket) } & \text { A-30 } \\ \text { (Foot bracket) } & \text { A-30 }\end{array}$
(Foot bracket) A-30
$\begin{array}{lr}\text { (Foot bracket) } & \text { A-29 } \\ \text { (Foot bracket) } & \text { A-29 }\end{array}$
(Foot bracket) A-29
$\begin{array}{ll}\text { (Knuckle joint) } & \text { A-34 } \\ \text { (Knuckle joint) } & \text { A-34 }\end{array}$
$\begin{array}{lc}\text { (Clevis bracket) } & \text { A-34 } \\ \text { (Clevis bracket) } & \text { A-34 }\end{array}$
Clevis bracket) A-34

(Actuator)	197
(Actuator)	201

Actuator) $\quad 205$

(Actuator)	199
(Actuator)	203

(Actuator)	207
(Actuator)	221

(Actuator) 225

(Actuator)	229
(Actuator)	223

Actuator) 227

(Actuator)	231
(Actuator)	211

Appendix: - 101 madex

RCA-RGS3D	(Actuator)	215
RCA-RGS4C	(Actuator)	213
RCA-RGS4D	(Actuator)	217
RCA-RP-RA3	(Back mounting plate)	A-35
RCA-RP-RA4	(Back mounting plate)	A-35
RCA-SA4C	(Actuator)	75
RCA-SA4D	(Actuator)	81
RCA-SA4R	(Actuator)	93
RCA-SA5C	(Actuator)	77
RCA-SA5D	(Actuator)	83
RCA-SA5R	(Actuator)	95
RCA-SA6C	(Actuator)	79
RCA-SA6D	(Actuator)	85
RCA-SA6R	(Actuator)	97
RCA-SRA4R	(Actuator)	209
RCA-SRGD4R	(Actuator)	233
RCA-SRGS4R	(Actuator)	219
RCA-SS4D	(Actuator)	87
RCA-SS5D	(Actuator)	89
RCA-SS6D	(Actuator)	91
RCA-SS-SA4	(Slider spacer)	A-36
RCA-TRF-RA3	(Trunnion bracket)	A-38
RCA-TRF-RA4	(Trunnion bracket)	A-38
RCA-TRR-RA3	(Trunnion bracket)	A-38
RCA-TRR-RA4	(Trunnion bracket)	A-38
RCAW-RA3C	(Actuator)	455
RCAW-RA3D	(Actuator)	455
RCAW-RA3R	(Actuator)	455
RCAW-RA4C	(Actuator)	457
RCAW-RA4D	(Actuator)	457
RCAW-RA4R	(Actuator)	457
RCB-110-RA13-0	(Brake box)	248
RCB-110-RCLB-0	(Brake box)	392-394 - 396
RCB-CV-MW	(RS232 conversion adapter) N	$499 \cdot 512 \cdot 523 \cdot 533 \cdot 543 \cdot 555$
RCB-CV-USB	(USB conversion adapter)	$499 \cdot 512 \cdot 523 \cdot 533 \cdot 543 \cdot 555$
RCB-LB-TG	(TP adapter)	498
RCB-TU-PIO-A	(Insulated PIO terminal block)	522
RCB-TU-PIO-AP	(Insulated PIO terminal block) **	522
RCB-TU-PIO-B	(Insulated PIO terminal block)	522
RCB-TU-PIO-BP	(Insulated PIO terminall block)	522
RCB-TU-SIO-A	(SIO terminal block)	522
RCB-TU-SIO-AP	(SIO terminal block)	522
RCB-TU-SIO-B	(SIO terminal block) ${ }^{\text {a }}$	522
RCB-TU-SIO-BP	(SIO terminal block)	522
RCL-RA1L	(Actuator)	391
RCL-RA2L	(Actuator)	393
RCL-RA3L	(Actuator)	395
RCL-SA1L	(Actuator)	373
RCL-SA2L	(Actuator)	375
RCL-SA3L	(Actuator)	377
RCL-SA4L	(Actuator)	379
RCL-SA5L	(Actuator)	383
RCL-SA6L	(Actuator)	387
RCL-SM4L	(Actuator)	381
RCL-SM5L	(Actuator)	385
RCL-SM6L	(Actuator)	389
RCM-101-MW	(PC software)	$499 \cdot 512 \cdot 523 \cdot 533 \cdot 543 \cdot 555$
RCM-101-USB	(PC software)	$499 \cdot 512 \cdot 523 \cdot 533 \cdot 543 \cdot 555$
RCM-E	(Teaching box)	$512 \cdot 523 \cdot 533 \cdot 543 \cdot 555$
RCM-PM-01	(Touch panel display)	473
RCP2-BA6	(Actuator)	51
RCP2-BA6U	(Actuator)	51
RCP2-BA7	(Actuator)	53
RCP2-BA7U	(Actuator)	53
RCP2CR-GRLS	(Actuator)	413
RCP2CR-GRSS	(Actuator)	411
RCP2CR-HS8C	(Actuator)	409
RCP2CR-SA5C	(Actuator)	399
RCP2CR-SA6C	(Actuator)	401
RCP2CR-SA7C	(Actuator)	403
RCP2CR-SS7C	(Actuator)	405
RCP2CR-SS8C	(Actuator)	407
RCP2-FB-GR3S	(Flange bracket)	A-26
RCP2-FB-GR3S	(Flange bracket)	A-26
RCP2-FB-GRM	(Flange bracket)	A-26
RCP2-FB-GRS	(Flange bracket)	A-26
RCP2-FB-GRSS	(Flange bracket)	A-26
RCP2-FL-RA10	(Front flange bracket)	A-27
RCP2-FL-RA2	(Front flange bracket)	A-27
RCP2-FL-RA3	(Front flange bracket)	A-27
RCP2-FL-RA4	(Front flange bracket)	A-27
RCP2-FL-RA6	(Front flange bracket)	A-27
RCP2-FL-SRA4	(Front flange bracket, rear flange bracket)	A-27 - A-28

Appendix: - $103_{\text {Index }}$

RCP3-SA5R	(Actuator)	23
RCP3-SA6C	(Actuator)	13
RCP3-SA6R	(Actuator)	25
RCP3-TA3C	(Actuator)	269
RCP3-TA3R	(Actuator)	279
RCP3-TA4C	(Actuator)	271
RCP3-TA4R	(Actuator)	281
RCP3-TA5C	(Actuator)	273
RCP3-TA5R	(Actuator)	283
RCP3-TA6C	(Actuator)	275
RCP3-TA6R	(Actuator)	285
RCP3-TA7C	(Actuator)	277
RCP3-TA7R	(Actuator)	287
RCS2-A4R	(Actuator)	323
RCS2-A5R	(Actuator)	325
RCS2-A6R	(Actuator)	327
RCS2CR-SA4C	(Actuator)	425
RCS2CR-SA5C	(Actuator)	427
RCS2CR-SA5D	(Actuator)	437
RCS2CR-SA6C	(Actuator)	429
RCS2CR-SA6D	(Actuator)	439
RCS2CR-SA7C	(Actuator)	431
RCS2CR-SS7C	(Actuator)	433
RCS2CR-SS8C	(Actuator)	435
RCS2-F5D	(Actuator)	329
RCS2-FL-RA13	(Front flange bracket)	A-28
RCS2-FL-RA5	(Front flange bracket)	A-28
RCS2-FL-SRA7	(Front flange bracket)	A-28
RCS2-FT-RA13	(Foot bracket)	A-31
RCS2-FT-RA5	(Foot bracket)	A-31
RCS2-FT-SRA7	(Foot bracket)	A-31
RCS2-GR8	(Actuator)	351
RCS2-RA13R	(Actuator)	247
RCS2-RA4C	(Actuator)	235
RCS2-RA4D	(Actuator)	239
RCS2-RA4R	(Actuator)	243
RCS2-RA5C	(Actuator)	237
RCS2-RA5R	(Actuator)	245
RCS2-RGD4C	(Actuator)	257
RCS2-RGD4D	(Actuator)	261
RCS2-RGD4R	(Actuator)	265
RCS2-RGD5C	(Actuator)	259
RCS2-RGS4C	(Actuator)	249
RCS2-RGS4D	(Actuator)	253
RCS2-RGS5C	(Actuator)	251
RCS2-RT6	(Actuator)	365
RCS2-RT6R	(Actuator)	367
RCS2-RT7R	(Actuator)	369
RCS2-SA4C	(Aćtuator)	99
RCS2-SA4D	(Actuator)	111
RCS2-SA4R	(Actuator)	117
RCS2-SA5C	(Actuator)	101
RCS2-SA5D	(Actuator)	113
RCS2-SA5R	(Actuator)	119
RCS2-SA6C	(Actuator)	103
RCS2-SA6D	(Actuator)	115
RCS2-SA6R	(Actuator)	121
RCS2-SA7C	(Actuator)	105
RCS2-SA7R	(Actuator)	123
RCS2-SRA7BD	(Actuator)	241
RCS2-SRGD7BD	(Actuator)	263
RCS2-SRGS7BD	(Actuator)	255
RCS2-SS7C	(Actuator)	107
RCS2-SS7R	(Actuator)	125
RCS2-SS8C	(Actuator)	109
RCS2-SS8R	(Actuator)	127
RCS2W-RA4C	(Actuator)	459
RCS2W-RA4D	(Actuator)	459
RCS2W-RA4R	(Actuator)	459
RE	(Rod end extended)	A-35
REU-1	(Regenerative resistance unit)	596
REU-2	(Regenerative resistance unit)	555-585
REXT	(Extension unit)	505-511
REXT-CTL	(Extension unit)	505
REXT-SIO	(Extension unit)	505
RGW-CC	(Gateway unit)	508
RGW-DV	(Gateway unit)	508
RGW-PR	(Gateway unit)	509
RGW-SIO	(Gateway unit)	509
RP	(Back mounting plate)	A-35
RPCON	(Controller unit)	510

Appendix: - $105_{\text {Index }}$

[^0]: Note: Does not include the positioning settling time (0.15 sec for ball screw, and 0.2 sec for belt). \square Triangular Pattern

[^1]: Note: In the graph above, the number after the type is the lead number.

[^2]: * (3) is the lead, (4) is the stroke, and (5) is the cable length.

[^3]: * (3) is the lead, (4) is the stroke, and (5) is the cable length.

[^4]: * (1) is the encoder type, (2) is the motor type, (3) is the lead, (4) is the motor type, and (5) is the cable length.

[^5]: * (1) is the encoder type, (2) is the motor type, (3) is the lead, (4) is the motor type, and (5) is the cable length.

