monsamer $\mathrm{HC} 44_{\text {series }}$ PCON-CA
 Power CON

RI ROB6 CYKINDER

www.intelligentactuator.com

Power CON Realizing 1.5 Times the Speed and Double the Payload

The Power CON 150 series boosts the performance of ROBO Cylinder IAI is proud to introduce the PCON-CA model combining a Power developed high-output driver (patent pending).

- Improved dynamic performance (the speed is up to 1.5 times and payload is up to twice *Specific values vary depending on the model.
- New functions designed to enhance maintainability enable preventative maintenance, so
- The takt time minimization function lets you set optimal operating conditions with greater

RCP4-SA6
RCP4-SA7

RCP4 Series Variations

Series	Shape	Type	External view	Actuator size (width)	Stroke		
RCP4	Slider type	SA5	8	52 mm	100	200	300
		SA6	8	58 mm			
		SA7		73 mm	-		
	Rod type	RA5	0	52 mm		mma	
		RA6	0	61 mm		mus	

Controller

Series	Type	Page
PCON	CA	p.21

150\% the Output, Achievable with Standard Controllers

standard motorized cylinders to amazing new heights. CON 150 controller with a RCP4 actuator supporting the newly

IAl's conventional models*) significantly boosts the productivity of your system.
less time is needed for maintenance. ease.

					Ball screw lead (mm)	Maximum speed (mm / s)	Maximum payload (kg)		Maximum acceleration	Page
							Horizontal	Vertical		
400	500	600	700	800	20	1440	6.5	1	$1 G$	$p .9$
$50 \mathrm{~mm} \sim 800 \mathrm{~mm}$					12	900	9	2.5		
					3	225	20	12		
					20	1440	10	1	$1 G$	p. 11
50 mm 800mm					12	900	15	2.5		
					3	450	25	12		
					24	1200	20	3	$1 G$	p. 13
$50 \mathrm{~mm} \sim 800 \mathrm{~mm}$					16	980	40	8		
					8	490	45	16		
					20	800	6	1.5	$1 G$	p. 15
					12	700	25	4		
					6	450	40	10		
					3	225	60	20		
					24	800	20	3	$1 G$	p. 17
					16	700	50	8		
					8	420	60 80	18		

Features

Shorter Takt Time Significantly Boosts New Functions of RCP4 Actuator

1.5 times higher maximum speed and double the payload when combined with a Power CON 150

When the new controller (Power CON 150) equipped with our newly developed high-output driver (patent pending) is used, the maximum speed increases significantly by up to 1.5 times the levels achievable with IAI's conventional models, while the payload is greater by up to twice (*). In addition to these amazing improvements in specifications, the maximum speed does not drop as much even when the payload increases due to increased torque with the high speed motor, meaning that dynamic performance equivalent to that of a higher-class model can be achieved at lower cost.
(*) The * The specific rates of improvement vary depending on the model.
Power CON 150 PCON-CA

Correlation Diagram of Speed and Payload

Many variations to choose from,

 including three slider types and two rod typesFrom the current RCP2 series, we selected three slider types (SA5/SA6/SA7) and two rod types (RA5/RA6), which are among the most widely used future.

the Productivity of Your System

3

The rod type <Radial Cylinder> with a built-in guide mechanism can carry radial loads over a long stroke (500 mm).

The rod type <Radial Cylinder> has a built-in guide mechanism in the actuator to carry radial loads on the rod over a long stroke of up to 500 mm . The guide mechanism also reduces vibration and deflection of the rod significantly.

Easy replacement of the motor with removal of only one setscrew

The motor has been unitized for easy replacement. The actuator and motor unit can be separated and replaced by removing only one setscrew, so the time required for maintenance becomes significantly shorter.

Slider types have mounting

Slider types have mounting holes that are compatible with RCP2 actuators, meaning that you can replace your current RCP2 actuator with a RCP4 with ease. Also, the mounting holes provided on rod types are the same as those provided on slider types, instead of T-slots found on the RCP2, and reamed holes are also provided to significantly improve installation repeatability.

CMIMMDERR

Features

New Functions to Enhance Maintainability
 New Functions of Power CON 150 PCON-CA

6

Keep track of the production volume and utilization ratio with the total movement counter function

The total number of times the actuator has moved is counted and recorded in the controller, and a signal is output to an external device once the pre-defined count is exceeded. This function can be used to keep track of the production volume, utilization ratio, etc.

7

Know when to perform maintenance with the total travel counter function

The total distance travelled by the actuator is counted and recorded in the controller, and a signal is output to an external device once the pre-defined count is exceeded. By using this function, you know when to add grease or perform periodic maintenance.

8

Retain alarm generation times

 with the calendar functionThe calendar function (clock function) lets you add timestamps to the history of alarms, etc. This information is useful in troubleshooting, etc.

- Cithenemion				
30t6 5\%t	Sand			[5ay (E/6/2 meisin
antertas iters	ITI	Foweray mo mextr	-x**	
Fartary ${ }^{\text {a }}$	± 6	Emersol pover motage retarnam	\ldots	21/2/ms stswas
Emupr 2	TT 7		-...	21/2/ns senviet
minaty 1	ver		-men	
minter 1	ITF	fiverst mo truss	-x.-	
Fintury 3	挷	Lsetrst pover matape jesamama	--....)	
Entiry	tst		\cdots	2L/2//a 25064ts
Emary	m		-a.er	
Ematr 8				
Eantiry				
manery 18				
Fixtaty 3				
Gatiry 78				
mantry 38				
Panter 14				
Enaty 38				

Optimal Operating Conditions Are Set Automatically Takt time minimization function

0 Setting optimal operating conditions has become easier with the takt time minimization function

The takt time minimization function is a new feature added to the ROBO Cylinder PC software (Ver. 8.03.00.00 or later) and touch-panel teaching (model number CON-PTA). All you need is to connect the actuator to a controller supporting this function and enter the actuator model, load, etc., and optimal acceleration/deceleration and speed according to the load will be set automatically.

The first step to using the takt time minimization function is to set the model number of the actuator used and the load (mass) to be transported.

- Cycle time optmization			ModeI				Lead [mm] Stroke [mm] Direction								Load pen No. 0. Load		Load Setting	
			RCP4-RA6C				8		250	Horz		Setting Aotuator					[Kg]	0.000
No	$\begin{array}{\|c\|} \hline \text { Position } \\ {[\mathrm{mm}]} \end{array}$	Speed [mm/s]	$\begin{array}{\|c} \mathrm{ACC} \\ {[\mathrm{G}]} \end{array}$	$\begin{aligned} & \text { DCL } \\ & {[9]} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Push } \\ {[+1]} \\ \hline \end{gathered}$	$\begin{gathered} \text { LoTh } \\ {[4]} \end{gathered}$	$\begin{gathered} \text { Pos.band } \\ {[\mathrm{mm}]} \\ \hline \end{gathered}$	Zone [mim]	$\begin{gathered} \text { Zone } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \text { ACC/DCL } \\ \text { mode } \end{gathered}$	$\begin{aligned} & \text { ABS } \\ & \text { INC } \end{aligned}$	Carr Load	Stop Mode	$\begin{gathered} \text { Vibsup } \\ \text { No. } \end{gathered}$		ant		
0																		
1	0.00	420.00	0.30	0.30	0	0	0.10	0.00	0.00	0	0	0	0	0				
2	250.00	420.00	0.30	0.30	0	0	0.10	0.00	0.00	0	0	0	0	0				
$\frac{1}{7}$	19E	gon An	$\bigcirc \mathrm{An}$	$\bigcirc \mathrm{En}$	\bigcirc	\square	¢ in	a An	$\bigcirc \mathrm{A}$ ¢	\bigcirc	n	n	2	n				

1. Setting the acceleration/deceleration from the speed

Enter a desired speed in the position data table, and the maximum settable acceleration/deceleration will be set automatically according to the pre-defined load-speed combinations.

2. Setting the acceleration/deceleration and speed from the travel

Specify the position data number associated with desired start/end positions of movement and set a desired travel distance, and the combination of acceleration/deceleration and speed that gives the shortest travel time will be set automatically.

10 PIO control mode and pulse-train control mode to choose from

You can select a controller of one of two types: the positioner type where position numbers are specified by I/Os (input/ output signals) from a PLC, etc., and the pulse-train type where the actuator is directly operated by sending pulses from a positioning unit. (Pulse-train controllers also support positioner operation using I/Os.)

T Motor silencer function

Typical operating noises of pulse motors are reduced at low speed.
\qquad

System Configuration

Model Specification Items

Actuator

Actuator Options

Brake

Option code: B

Applicable models

Description

RCP4-SA5C/SA6C/SA7C/RA5C/RA6C

A mechanism to hold the slider in place when the actuator is used vertically, so that it will not drop and damage the work part, etc., when the power or servo is turned off.

Applicable models
 RCP4-SA5C/SA6C/SA7C/RA5C/RA6C

Description
Select this option if you want to change the home position of the actuator slider or rod from the normal position (motor end) to the front end.

Applicable models

Description

RCP4-SA5C/SA6C
A bracket used to secure a rod actuator from the actuator side. The flange can be purchased separately later on.

RCP4-RA6 type
Model number of flange: RCP4-FL-RA6

Scraper
Option code: SC

Applicable models

Description

RCP4-RA5C/RA6C

When a rod actuator is used, select this option if you want to prevent dust attached to the rod from entering the actuator.

- Correlation Diagrams of Speed and Payload

With the RCP4 series, due to the characteristics of the pulse motor, payload decreases as the speed increases. Use the chart below to confirm that the desired speed and payload requirements are met.

Actuator Specifications

Leads and Payloads

Model number	Lead (mm)	Maximum payload		Positioning repeatability (mm)	Stroke (mm)
		Horizontal (kg)	Vertical (kg)		
RCP4-SA5C-I-42P-20-(1)-P3-(2)-(3)	20	6.5	1	± 0.03	$\begin{gathered} 50 \sim 800 \\ \text { (every } 50 \mathrm{~mm} \text {) } \end{gathered}$
RCP4-SA5C-I-42P-12-(1)-P3-(2)-3	12	9	2.5	± 0.02	
RCP4-SA5C-I-42P-6-(1)-P3-(2)-(3)	6	18	6		
RCP4-SA5C-I-42P-3-(1)-P3-(2)-(3)	3	20	12		

Code explanation (1)Stroke (2) Cable length (3)Options
\square Stroke and Maximum Speed (See P20)

Lead	$\begin{aligned} & 50 \sim 450 \\ & (50 \mathrm{~mm}) \end{aligned}$	$\begin{array}{r} 500 \\ (\mathrm{~mm}) \\ \hline \end{array}$	$\begin{aligned} & 550 \\ & (\mathrm{~mm}) \\ & \hline \end{aligned}$	$\begin{aligned} & 600 \\ & (\mathrm{~mm}) \\ & \hline \end{aligned}$	$\begin{aligned} & 650 \\ & (\mathrm{~mm}) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 700 \\ (\mathrm{~mm}) \\ \hline \end{array}$	$\begin{aligned} & 750 \\ & (\mathrm{~mm}) \\ & \hline \end{aligned}$	$\begin{aligned} & 800 \\ & (\mathrm{~mm}) \\ & \hline \end{aligned}$
20	$\begin{gathered} \hline 1440 \\ \langle 1280\rangle \end{gathered}$	$\begin{gathered} \hline 1440 \\ <1280\rangle \end{gathered}$	1225	1045	900	785	690	610
12	900	795	665	570	490	425	375	330
6	450	395	335	285	245	215	185	165
3	225	195	165	140	120	105	90	80

The values in < > apply when
the actuator is used vertically.
(2)CableLencth

Type	Cable symbol	Standard price
Standard type	$\mathrm{P}(1 \mathrm{~m})$	-
	$\mathrm{S}(3 \mathrm{~m})$	-
	$\mathrm{M}(5 \mathrm{~m})$	-
Special length	$\mathrm{X} 06(6 \mathrm{~m}) \sim \mathrm{X10}(10 \mathrm{~m})$	-
	$\mathrm{X} 11(11 \mathrm{~m}) \sim \mathrm{X15}(15 \mathrm{~m})$	-
	$\mathrm{X} 16(16 \mathrm{~m}) \sim \mathrm{X20}(20 \mathrm{~m})$	-
	$\mathrm{R} 01(1 \mathrm{~m}) \sim \mathrm{RO3}(3 \mathrm{~m})$	-
	$\mathrm{R} 04(4 \mathrm{~m}) \sim \mathrm{RO5}(5 \mathrm{~m})$	-
	$\mathrm{R} 06(6 \mathrm{~m}) \sim \mathrm{R} 10(10 \mathrm{~m})$	-
	$\mathrm{R} 11(11 \mathrm{~m}) \sim \mathrm{R} 15(15 \mathrm{~m})$	-
	$\mathrm{R} 16(16 \mathrm{~m}) \sim \mathrm{R} 20(20 \mathrm{~m})$	-

Actuator Specifications
Item Description Drive system Ball screw 010 mm, rolled C10 Lost motion 0.1 mm or less Base Material: Aluminum with white alumite treatment Guide Linear guide Dynamic allowable moment (*) Ma: $4.9 \mathrm{~N} \cdot \mathrm{~m}, \mathrm{Mb}: 6.8 \mathrm{~N} \cdot \mathrm{~m}, \mathrm{Mc}: 11.7 \mathrm{~N} \cdot \mathrm{~m}$ Allowable overhang 150 mm or less in Ma, Mb and Mc directions Ambient operating temperature, humidity 0 to $40^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$ or less (Non-condensing)${ }^{*}$ (*) Based on $5,000 \mathrm{~km}$ of traveling life

(*) Based on 5,000km of traveling life
Allowable load moment directions

Overhang load

www.intelligentaktuator.com

*If the non-motor end specification is selected, reverse the dimension on motor end (distance to the home) and that on front end.
*1 Connect the motor and encoder cables.
*2 During home return, be careful to avoid interference from peripheral objects because the slider travels until the mechanical end.

■ Dimensions and Mass by Stroke

Stroke		50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
L	Without brake	279	329	379	429	479	529	579	629	679	729	779	829	879	929	979	1029
	With brake	319	369	419	469	519	569	619	669	719	769	819	869	919	969	1019	1069
	A	73	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
	B	0	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7
	C	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
	D	4	4	4	6	6	8	8	10	10	12	12	14	14	16	16	18
	E	4	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18
	F	181	231	281	331	381	431	481	531	581	631	681	731	781	831	881	931
	G	166	216	266	316	366	416	466	516	566	616	666	716	766	816	866	916
	H	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	J	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
Mass	Without brake	1.5	1.6	1.8	1.9	2.1	2.2	2.4	2.5	2.6	2.8	2.9	3.1	3.2	3.4	3.5	3.7
(kg)	With brake	1.7	1.9	2.0	2.1	2.3	2.4	2.6	2.7	2.9	3.0	3.2	3.3	3.5	3.6	3.7	3.9

Applicable Controller

RCP4 series actuators can be operated with the controller indicated below. Select the type according to your intended application.

Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity	Standard price	Reference page
Positioner type (NPN specification)	-	PCON-CA-42PI-NP- \square-0- \square	Register positions to move the actuator into the controller		DC24V	Refer to P. 27		P. 21
Positioner type (PNP specification)		PCON-CA-42PI-PN- \square-0- \square	corresponding to each desired position to operate the actuator.					
Pulse-train type (NPN specification)		PCON-CA-42PI-PLN- \square-0- \square	The actuator can be operated freely via pulse-train controller from an external output device.	-			-	
Pulse-train type (PNP specification)	1	PCON-CA-42PI-PLP- \square-0- \square						

- Correlation Diagrams of Speed and Payload

With the RCP4 series, due to the characteristics of the pulse motor, payload decreases as the speed increases. Use the chart below to confirm that the desired speed and payload requirements are met.

Actuator Specifications

Model number	$\begin{aligned} & \text { Lead } \\ & (\mathrm{mm}) \end{aligned}$	Maximum payload		Positioning repeatability (mm)	Stroke (mm)
		Horizontal (kg)	Vertical (kg)		
RCP4-SA6C-I-42P-20-(1)-P3-(2)-3	20	10	1	± 0.03	50~800 (every 50mm)
RCP4-SA6C-I-42P-12-(1)-P3-(2)-(3)	12	15	2.5	± 0.02	
RCP4-SA6C-I-42P-6-(1)-P3-(2)-(3)	6	25	6		
RCP4-SA6C-I-42P-3-(1)-P3-(2)-3	3	25	12		

Code explanation (1)Stroke (2) Cable length (3) Options
Stroke and Maximum Speed (See P20)

Stroke Lead	$50 \sim 450$ $(50 \mathrm{~mm})$	500 $(\mathrm{~mm})$	550 $(\mathrm{~mm})$	600 $(\mathrm{~mm})$	650 $(\mathrm{~mm})$	(mm)	50 $(\mathrm{~mm})$	800
20	1440 $\langle 1280\rangle$	1440 $\langle 128\rangle$	1230	1045	905	785	690	615
12	900	795	670	570	490	430	375	335
6	450	395	335	285	245	215	185	165
3	225	195	165	140	120	105	90	80

(1) Stroke
Stroke (mm) Standard price 50 - 100 - 150 - 200 - 250 - 300 - 350 - 400 - 450 - 500 - 550 - 600 - 650 - 700 - 750 - 800

(3)Options

Title	Option code	See page	Standard price
Brake	B	-	-
Non-motor end specification	NM	-	-

$\mathrm{O}_{\mathrm{O}}^{\text {cADd drwings can be downloaded }}$ www.intelligentaktuator.com

2 D
*If the non-motor end specification is selected, reverse the dimension on motor end (distance to the home) and that on front end.
${ }^{*} 1$ Connect the motor and encoder cables.
*2 During home return, be careful to avoid interference from peripheral objects because the slider travels until the mechanical end.

\square Dimensions and Mass by Stroke

Stroke		50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
L	Without brake	299.5	349.5	399.5	449.5	499.5	549.5	599.5	649.5	699.5	749.5	799.5	849.5	899.5	949.5	999.5	1049.5
	With brake	339.5	389.5	439.5	489.5	539.5	589.5	639.5	689.5	739.5	789.5	839.5	889.5	939.5	989.5	1039.5	1089.5
	A	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
	B	0	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7
	C	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8
	D	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
	E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	F	4	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18
	G	186.5	236.5	286.5	336.5	386.5	436.5	486.5	536.5	586.5	636.5	686.5	736.5	786.5	836.5	886.5	936.5
	H	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	J	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
	K	201.5	251.5	301.5	351.5	401.5	451.5	501.5	551.5	601.5	651.5	701.5	751.5	801.5	851.5	901.5	951.5
Mass	Without brake	2.0	2.1	2.3	2.4	2.6	2.7	2.9	3.0	3.2	3.4	3.5	3.7	3.8	4.0	4.1	4.3
(kg)	With brake	2.2	2.3	2.5	2.6	2.8	3.0	3.1	3.3	3.4	3.6	3.7	3.9	4.1	4.2	4.4	4.5

Applicable Controller

RCP4 series actuators can be operated with the controller indicated below. Select the type according to your intended application.

Title	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity	Standard price	Reference page
Positioner type (NPN specification)	-	PCON-CA-42PI-NP-प-0-■	Register positions to move the actuator into the controller		DC24V	Refer to P. 27		P. 21
Positioner type (PNP specification)		PCON-CA-42PI-PN-D-0-■	corresponding to each desired position to operate the actuator.					
Pulse-train type (NPN specification)	1	PCON-CA-42PI-PLN-D-0-】	The actuator can be operated freely via pulse-train controller from an external output device.	-			-	
Pulse-train type (PNP specification)	1	PCON-CA-42PI-PLP-D-0-■						

■ Correlation Diagrams of Speed and Payload
With the RCP4 series, due to the characteristics of the pulse motor, payload decreases as the speed increases. Use the chart below to confirm that the desired speed and payload requirements are met.

Actuator Specifications

Model number	Lead (mm)	Maximum payload		\qquad	Stroke (mm)
		Horizontal (kg)	Vertical (kg)		
RCP4-SA7C-I-56P-24-(1)-P3-(2)-3	24	20	3	± 0.03	$\begin{array}{c\|} 50 \sim 800 \\ \text { (every } 50 \mathrm{~mm} \text {) } \end{array}$
RCP4-SA7C-I-56P-16-(1)-P3-(2)-(3)	16	40	8	± 0.02	
RCP4-SA7C-I-56P-8-(1)-P3-(2)-3	8	45	16		
RCP4-SA7C-I-56P-4-(1)-P3-(2)-(3)	4	45	25		

Code explanation (1) Stroke (2) Cable length (3) Options
■ Stroke and Maximum Speed (See P20)

Stroke Lead	$50 \sim 550$ $(50 \mathrm{~mm})$	600 $(\mathrm{~mm})$	650 $(\mathrm{~mm})$	700 $(\mathrm{~mm})$	750 $(\mathrm{~mm})$	800 $(\mathrm{~mm})$
24	1200	1200	1155	1010	890	790
16	980 $<840\rangle$	865 $<840\rangle$	750	655	580	515
8	490	430	375	325	290	255
4	245 $<210\rangle$	215 $<210\rangle$	185	160	145	125

The values in $<>$ apply when
the actuator is used vertically.

(1) Stroke	
Stroke (mm)	Standard price
50	-
100	-
150	-
200	-
250	-
300	-
350	-
400	-
450	-
500	-
550	-
600	-
650	-
700	-
750	-
800	-

(3)Options			
Name	Option code	See page	Standard price
Brake	B	-	-
Non-motor end specification	NM	-	-

(2) Cable Length		
Type	Cable symbol	Standard price
Standard type	$\mathrm{P}(1 \mathrm{~m})$	-
	$S(3 \mathrm{~m})$	-
	M (5m)	-
Special length	X06 (6m) ~ $\mathrm{X10}$ (10m)	-
	X11 (11m) ~X15 (15m)	-
	X16 (16m) ~X20 (20m)	-
Robot cable	R01 (1m) ~R03 (3m)	-
	R04 (4m) ~R05 (5m)	-
	R06 (6m) ~R10 (10m)	-
	R11 (11m) ~R15 (15m)	-
	R16 (16m) ~R20 (20m)	-

Actuator Specifications

Item	\quad Description
Drive system	Ball screw 012 mm, rolled C10
Lost motion	0.1 mm or less
Base	Material: Aluminum with white alumite treatment
Guide	Linear guide
Dynamic allowable moment (${ }^{*}$)	Ma: $13.9 \mathrm{~N} \cdot \mathrm{~m}, \mathrm{Mb}: 19.9 \mathrm{~N} \cdot \mathrm{~m}, \mathrm{Mc}: 38.3 \mathrm{~N} \cdot \mathrm{~m}$
Allowable overhang	230 mm or less in Ma, Mb and Mc directions
Ambient operating temperature, humidity	0 to $40^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$ or less (Non-condensing)

www.intelligentaktuator.com

\square Dimensions and Mass by Stroke

	Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
L	Without brake	352.5	402.5	452.5	502.5	552.5	602.5	652.5	702.5	752.5	802.5	852.5	902.5	952.5	1002.5		1102.5
	With brake	402.5	452.5	502.5	552.5	602.5	652.5	702.5	752.5	802.5	852.5	902.5	952.5	1002.5			1152.5
	A	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
	B	0	0	0		1	2	2	3	3	4	4	5	5	6	6	7
	C	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8
	D	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
	E	2	3	3	3		3	3	3	3	3	3	3	3	3	3	3
	F	4	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18
	G	199	249	299	349	399	449	499	549	599	649	699	749	799	849	899	949
	H	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	J	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
	K	219.5	269.5	319.5	369.5	419.5	469.5	519.5	569.5	619.5	669.5	719.5	769.5	819.5	869.5	919.5	969.5
Mass	Without brake	3.4	3.6	3.8	4.1	4.3	4.6	4.8	5.1	5.3	5.6	5.8	6.0	6.3	6.5	6.8	7.0
(kg)	With brake	3.9	4.1	4.3	4.6	4.8	5.1	5.3	5.6	5.8	6.1	6.3	6.5	6.8	7.0	7.3	7.5

Applicable Controller
RCP4 series actuators can be operated with the controller indicated below. Select the type according to your intended application.

Title	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity	Standard price	Reference page
Positioner type (NPN specification)	-	PCON-CA-56PI-NP- \square-0- \square	Register positions to move the actuator into the controller		DC24V	Refer to P. 27		P. 21
Positioner type (PNP specification)		PCON-CA-56PI-PN- \square-0- \square	corresponding to each desired position to operate the actuator.					
Pulse-train type (NPN specification)		PCON-CA-56PI-PLN- \square-0- \square	The actuator can be operated freely via pulse-train controller from an external output device.	-			-	
Pulse-train type (PNP specification)		PCON-CA-56PI-PLP- \square-0- \square						

		ROBO Cylinder, Rod Type, Motor Unit Coupled, Actuator Width 52 mm , 24-V Pulse Motor					
Model Specificatio Items	RCP4 - RA5C - I Series - Type - Encoder type I: Incremental specification	- 42P - Motor type 42P: Pulse motor, size $42 \square$	\square Lead 20:20 mm $12: 12 \mathrm{~mm}$ 6: 6 mm 3: 3 mm	\square Stroke 50: 50 mm $400: 400 \mathrm{~mm}$ (every 50 mm)			\square - Options Refer to the options table below.

Built-in guide mechanism

(1) The payload is the value when operated at 0.3 G acceleration. The upper limit of acceleration is 1 G (or 0.5 G in a vertical installation). Note that raising the acceleration causes the payload to drop. (Refer to P. 20.)

Correlation Diagrams of Speed and Payload
With the RCP4 series, due to the characteristics of the pulse motor, payload decreases as the speed increases. Use the chart below to confirm that the desired speed and payload requirements are met.

Actuator Specifications

■ Leads and Payloads

Model number	Lead (mm)	Maximum payload		Maximum push force (N)	Positioning repeatability (mm)	Stroke (mm)
		Horizontal (kg)	Vertical (kg)			
RCP4-RA5C-I-42P-20-(1)-P3-(2)-(3)	20	6	1.5	56	± 0.03	
RCP4-RA5C-I-42P-12-(1)-P3-(2)-3	12	25	4	93		50~400
RCP4-RA5C-I-42P-6-(1)-P3-(2)-(3)	6	40	10	185	± 0.02	(every
RCP4-RA5C-I-42P-3-(1)-P3-(2)-(3)	3	60	20	370		

Code explanation (10)Stroke (2) Cable length (3) Options
\square Stroke and Maximum Speed (See P20)

$\left.$| Lead | Stroke |
| :---: | :---: | | $50 \sim 400$ |
| :---: |
| (every 50mm) | \right\rvert\, | 20 | 700 |
| :---: | :---: |
| 12 | 450 |
| 6 | 225 |
| 3 | |

(unit: mm/s)
(2) Cable Length

Type	Cable symbol	Standard price
Standard type	$\mathrm{P}(1 \mathrm{~m})$	-
	$\mathrm{S}(3 \mathrm{~m})$	-
	$\mathrm{M}(5 \mathrm{~m})$	-
	$\mathrm{X} 06(6 \mathrm{~m}) \sim \mathrm{X10}(10 \mathrm{~m})$	-
	$\mathrm{X} 11(11 \mathrm{~m}) \sim \mathrm{X15}(15 \mathrm{~m})$	-
	$\mathrm{X} 16(16 \mathrm{~m}) \sim \mathrm{X20}(20 \mathrm{~m})$	-
Robot cable	$\mathrm{R} 01(1 \mathrm{~m}) \sim \mathrm{RO3}(3 \mathrm{~m})$	-
	$\mathrm{R} 04(4 \mathrm{~m}) \sim \mathrm{R05}(5 \mathrm{~m})$	-
	$\mathrm{R} 06(6 \mathrm{~m}) \sim \mathrm{R} 10(10 \mathrm{~m})$	-
	$\mathrm{R} 11(11 \mathrm{~m}) \sim \mathrm{R} 15(15 \mathrm{~m})$	-
	$\mathrm{R} 16(16 \mathrm{~m}) \sim \mathrm{R} 20(20 \mathrm{~m})$	-

(3) Options

Name	Option code	See page	Standard price
Brake	B	-	-
Flange bracket	FL	-	-
Non-motor end specification	NM	-	-
Scraper	SC	-	-

Actuator Specifications
Item Description Drive system Ball screw 010 mm , rolled C10 Lost motion 0.1 mm or less Rod 022 stainless steel pipe Rod non-rotation precision ± 0.1 deg Allowable load/torque at end of rod Refer to the table on the facing page. Load offset distance at end of rod 100 mm or less Ambient operating temperature, humidity 0 to $40^{\circ} \mathrm{C}, 85 \%$ RH or less (Non-condensing) Offset distance at end of rod (100mm or less)

CADdrawings can be downloaded WWW.intelligentaktuator.com from the website.

*|f the non-motor end specification is selected, reverse the dimension on motor end (distance to the home) and that on front end.

1 Connect the motor and encoder cables.
*2 During home return, be careful to avoid interference from peripheral objects because the slider travels until the mechanical end.
*3 The direction of width across flats varies depending on the product.
*4 If the actuator is installed using the front housing and flange, make sure the actuator will not receive any external force. (For details, refer to "Notes on Installing Rod Actuators" on P. 19.)
(Mounting hole and reference plane) $\mathrm{M} 10 \times 1.25$

Dimensions with Flange (Optional) (*4)

Cable joint connector (*1)

- Rod Deflection of RCP4-RA5C (Reference Values)
(The graph below plots deflection as measured by installing the actuator vertically and applying a radial force to the rod from one side)

■ Dimensions and Mass by Stroke

Applicable Controller

RCP4 series actuators can be operated with the controller indicated below. Select the type according to your intended application.

Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity	Standard price	Reference page
Positioner type (NPN specification)	$\sqrt{-1}$	PCON-CA-42PI-NP- \square-0- \square	Register positions to move the actuator to in the controller		DC24V	Refer to P. 27		P. 21
Positioner type (PNP specification)		PCON-CA-42PI-PN- \square-0- \square	corresponding to each desired position to operate the actuator.					
Pulse-train type (NPN specification)		PCON-CA-42PI-PLN- \square-0- \square	The actuator can be operated freely via pulse-train controller from an external output device.	-			-	
Pulse-train type (PNP specification)		PCON-CA-42PI-PLP- \square-0- \square						

* Refer to P. 22 for the details of the aforementioned model numbers.

D 1 ROBO Cylinder, Rod Type, Motor Unit Coupled, Actuator Width 61mm, 24-V Pulse Motor								

Built-in guide mechanism

- Correlation Diagrams of Speed and Payload

With the RCP4 series, due to the characteristics of the pulse motor, payload decreases as the speed increases. Use the chart below to confirm that the desired speed and payload requirements are met.

Actuator Specifications

■ Leads and Payloads

Model number	Lead (mm)	Maximum payload		Maximum push force (N)	Positioningrepeatability (mm)	Stroke (mm)
		Horizontal (kg)	Vertical (kg)			
RCP4-RA6C-I-56P-24-(1)-P3-(2)-3	24	20	3	182	± 0.03	$\begin{gathered} 50 \sim 500 \\ \text { (every } \\ 50 \mathrm{~mm} \text {) } \end{gathered}$
RCP4-RA6C-I-56P-16-(1)-P3-(2)-3	16	50	8	273	± 0.02	
RCP4-RA6C-I-56P-8-(1)-P3-(2)-(3)	8	60	18	547		
RCP4-RA6C-I-56P-4-(1)-P3-(2)-(3)	4	80	28	1094		

Code explanation (1) Stroke (2) Cable length (3) Options
\square Stroke and Maximum Speed (See P20)

Lead	$50 \sim 500$ Stroke (every 50 mm)
24	800 $<600>$
16	700 $<560>$
8	420
4	210
The values in <> apply when the actuator is used vertically.	
(Unit: mm / s)	

(1) Stroke
Stroke (mm) Standard price 50 - 100 - 150 - 200 - 250 - 300 - 350 - 400 - 450 - 500 -

(3) Options

Name	Option code	See page	Standard price
Brake	B	-	-
Flange bracket	FL	-	-
Non-motor end specification	NM	-	-
Scraper	SC	-	-

Type	Cable symbol	Standard price
Standard type	$\mathrm{P}(1 \mathrm{~m})$	-
	$\mathrm{S}(3 \mathrm{~m})$	-
	$\mathrm{M}(5 \mathrm{~m})$	-
	$\mathrm{X} 06(6 \mathrm{~m}) \sim \mathrm{X10}(10 \mathrm{~m})$	-
	$\mathrm{X} 11(11 \mathrm{~m}) \sim \mathrm{X15}(15 \mathrm{~m})$	-
	$\mathrm{X} 16(16 \mathrm{~m}) \sim \mathrm{X} 20(20 \mathrm{~m})$	-
Robot cable	$\mathrm{RO1}(1 \mathrm{~m}) \sim \mathrm{RO3}(3 \mathrm{~m})$	-
	$\mathrm{R} 04(4 \mathrm{~m}) \sim \mathrm{R05}(5 \mathrm{~m})$	-
	$\mathrm{R} 06(6 \mathrm{~m}) \sim \mathrm{R} 10(10 \mathrm{~m})$	-
	$\mathrm{R} 11(11 \mathrm{~m}) \sim \mathrm{R15}(15 \mathrm{~m})$	-
	$\mathrm{R} 16(16 \mathrm{~m}) \sim \mathrm{R} 20(20 \mathrm{~m})$	-

Actuator Specifications

Item	Description
Drive system	Ball screw 012 mm, rolled C10
Lost motion	0.1 mm or less
Rod	025 stainless steel pipe
Rod non-rotation precision	± 0.1 deg
Allowable load/torque at end of rod	Refer to the table on the facing page.
Load offset distance at end of rod	100 mm or less
Ambient operating temperature, humidity	0 to $40^{\circ} \mathrm{C}, 85 \%$ RH or less (Non-condensing)

Offset distance at end of rod (100 mm or less) $\stackrel{\text { Ambient operating temperature, humidity }}{0}$ to $40^{\circ} \mathrm{C}, 85 \%$ RH or less (Non-condensing)

CADdrawings can be downloaded WWW.intelligentaktuator.com from the website.

*If the non-motor end specification is selected, reverse the dimension on motor end (distance to the home) and that on front end.
*1 Connect the motor and encoder cables.
*2 During home return, be careful to avoid interference from peripheral objects because the slider travels until the mechanical end.
*3 The direction of width across flats varies depending on the product.
*4 If the actuator is installed using the front housing and flange, make sure the actuator will not receive any external force.
(For details, refer to "Notes on Installing Rod Actuators" on P. 19.)

Dimensions with
Flange (Optional) (*4)

- Rod Deflection of RCP4-RA6C (Reference Values)
■ Dimensions and Mass by Stroke
(The graph below plots deflection as measured by installing the actuator vertically and applying a radial force to the rod from one side.)

Applicable Controller

RCP4 series actuators can be operated with the controller indicated below. Select the type according to your intended application.

Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity	Standard price	Reference page
Positioner type (NPN specification)	-	PCON-CA-56PI-NP- \square-0- \square	Register positions to move the actuator to in the controller		DC24V	Refer to P. 27		P. 21
Positioner type (PNP specification)		PCON-CA-56PI-PN- \square-0- \square	corresponding to each desired position to operate the actuator.					
Pulse-train type (NPN specification)		PCON-CA-56PI-PLN-口-0-口	The actuator can be operated freely via pulse-train controller from an external output device.	-			-	
Pulse-train type (PNP specification)		PCON-CA-56PI-PLP- \square-0- \square						

CMIIMDIER

Notes on Installing Rod Actuators

When installing the actuator using the front housing or with a flange (optional), make sure the actuator will not receive external forces. (External forces may cause malfunction or damaged parts.) If the actuator will receive external forces or when the actuator is combined with a Cartesian robot, etc., use the mounting holes on the actuator base to secure the actuator.

Even if the actuator will not receive external forces, provide a support base as shown in the figure on the right to support the actuator if the actuator is installed horizontally and operated over a stroke of 150 or more. (It is recommended that a support base be installed whenever possible even if the stroke is 150 or less.)

Selection Guideline (Correlation Diagram of Push Force and Current-limiting Value)

In push-motion operation, the push force can be used by changing the current-limiting value of the controller over a range of 20% to 70%. The maximum push-force varies depending on the model, so check the required push force from the table below and select an appropriate type meeting the purpose of use.

When performing push-motion operation using a slider actuator, limit the push current so that the reactive force moment generated by the push force will not exceed 80% of the rated moment (Ma, Mb) specified in the catalog. To help with the moment calculations, the application position of the guide moment is shown in the figure below. Calculate the necessary moment by considering the offset of the push force application position.

Note that if an excessive force exceeding the rated moment is applied,
 the guide may be damaged and the life may become shorter. Accordingly, include a sufficient safety factor when deciding on the push force.

Calculation example)
If push-motion operation is performed with a RCP4-SA7C by applying 100 N at the position shown to the right, the moment received by the guide, or Ma, is calculated as $(43+50) \times 100=9300(\mathrm{~N} \cdot \mathrm{~mm})=9.3(\mathrm{~N} \cdot \mathrm{~m})$.

Since the rated moment Ma of the SA7C is $13.9(\mathrm{~N} \cdot \mathrm{~m})$, $13.9 \times 0.8=11.12>9.3$, suggesting that this selection is acceptable.
 If a Mb moment generates due to push-motion operation, calculate the moment from the overhang and confirm, in the same way, that the calculated moment is within 80% of the rated moment.

Correlation Diagrams of Push Force and Current-limiting value

SA5C/SA6C/RA5C type

SA7C type

- The relationship of push force and current-limiting value is only a reference, and the graphs may vary slightly from the actual values.
- If the current-limiting value is less than 20%, the push force may vary. Make sure the current-limiting value remains 20% or more.

Selection Guideline (Table of RCP4 Payload by Speed/Acceleration)

The maximum acceleration/deceleration of the RCP4 is 1.0 G in a horizontal application or 0.5 G in vertical application. The payload drops as the acceleration increases, so when selecting a model, use the tables below to find one that meets the desired speed, acceleration and payload.

(Unit: kg)
RCP4-SA6C, Lead 20

Orientaion	Horizontal						Vertical			
Speed $(\mathrm{mm} / \mathrm{s})$	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5		
0	10	10	9	7	6	1	1	1		
160	10	10	9	7	6	1	1	1		
320	10	10	9	7	6	1	1	1		
480	10	10	9	7	6	1	1	1		
640	10	10	8	6	5	1	1	1		
800	10	9	6.5	4.5	3	1	1	1		
960		8	5	3.5	2		1	1		
1120		6.5	3	2	1.5		0.5	0.5		
1280			1	1	1			0.5		
1440			1	0.5						

(Unit: kg)
RCP4-SA7C, Lead 24

Orientation	Horizontal					Vertical		
Speed (mm/s)	Acceleration (G)							
	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	20	20	18	16	14	3	3	3
200	20	20	18	16	14	3	3	3
400	20	20	18	16	14	3	3	3
600	20	16	15	10	9	3	3	3
800	16	12	10	7	4		3	2.5
1000		8	4.5	4	2		2	1.5
1200		5.5	2	2	1		1	1
							Uni	kg)

RCP4-RA5C, Lead 20

Orientation	Horizontal					Vertical		
Speed $(\mathrm{mm} / \mathrm{s})$	Acceleration (G)							
	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	6	6	6	5	5	1.5	1.5	1.5
160	6	6	6	5	5	1.5	1.5	1.5
320	6	6	6	5	3	1.5	1.5	1.5
480	6	6	6	5	3	1.5	1.5	1.5
640		6	4	3	2		1.5	1.5
800		4	3				1	1

(Unit: kg)

RCP4-SA5C, Lead 12

Orientaion	Horizontal					Vertical		
$\begin{gathered} \text { Speed } \\ (\mathrm{mm} / \mathrm{s}) \end{gathered}$	Acceleration (G)							
	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	9	9	9	9	8	2.5	2.5	2.5
100	9	9	9	9	8	2.5	2.5	2.5
200	9	9	9	9	8	2.5	2.5	2.5
300	9	9	9	9	8	2.5	2.5	2.5
400	9	9	9	9	8	2.5	2.5	2.5
500	9	9	9	8	6.5	2.5	2.5	2.5
600	9	9	9	6	4	2.5	2.5	2.5
700	9	9	8	4	2.5	2.5	2.5	2
800		7	5	2	1		1.5	1
900		5	3	1	1		0.5	0.5

(Unit: kg)

RCP4-SA6C, Lead 12

	Orientation						Horizontal					Vertical		
Speed $(\mathrm{mm} / \mathrm{s})$	Acceleration (G)													
	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5						
0	15	15	12.5	11	10	2.5	2.5	2.5						
100	15	15	12.5	11	10	2.5	2.5	2.5						
200	15	15	12.5	11	10	2.5	2.5	2.5						
300	15	15	12.5	11	10	2.5	2.5	2.5						
400	15	14	11	10	8.5	2.5	2.5	2.5						
500	15	13	10	8	6.5	2.5	2.5	2.5						
600	15	12	9	6	4	2.5	2.5	2.5						
700	12	10	8	4	2.5	2.5	2.5	2						
800	10	7	5	2	1	2	1.5	1						
900		5	3	1	1		0.5	0.5						

(Unit: kg)
RCP4-SA7C, Lead 16

(Unit: kg)

RCP4-RA5C, Lead 12

Orientation	Horizontal						Vertical		
Speed $(\mathrm{mm} / \mathrm{s})$	Acceleration (G)								
	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5	
0	25	25	18	16	12	4	4	4	
100	25	25	18	16	12	4	4	4	
200	25	25	18	16	10	4	4	4	
300	25	25	18	12	8	4	4	4	
400	20	20	14	10	6	4	4	4	
500	15	15	8	6	4	4	3.5	3	
600	10	10	6	3	2	4	3	2	
700		6	2				2	1	

(Unit: kg)

RCP4-RA6C, Lead 16

Orientaion	Horizontal					Vertical				
Speed $(\mathrm{mm} / \mathrm{s})$	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5		
0	50	50	40	35	30	8	8	8		
140	50	50	40	35	30	8	8	8		
280	50	50	35	25	20	8	7	7		
420	50	25	18	14	10	6	4.5	4		
560	12	10	5	3	2	4	2	1		
700	3	2								
(Unit: kg$)$										

RCP4-SA5C, Lead 6

Orientation	Horizontal					Vertical		
Speed (mm / s)	Acceleration (G)							
	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	18	18	14	14	12	6	6	6
50	18	18	14	14	12	6	6	6
100	18	18	14	14	12	6	6	6
150	18	18	14	14	12	6	6	6
200	18	18	14	14	12	6	6	6
250	18	18	14	14	12	6	6	5.5
300	18	18	14	14	10	6	5.5	5
350	18	18	12	11	8	6	4.5	4
400	18	14	10	7	6	4.5	3.5	3
450	16	10	6	4	2	3.5	2	2

(Unit: kg)

RCP4-SA6C, Lead 6

(Unit: kg)
RCP4-SA7C, Lead 8

Orientation	Horizontal						Vertical		
Speed $(\mathrm{mm} / \mathrm{s})$	Acceleration (G)						0.1	0.3	
0.5	0.7	1	0.1	0.3	0.5				
0	45	45	45	40	40	16	16	16	
70	45	45	45	40	40	16	16	16	
140	45	45	40	38	35	16	16	16	
210	45	40	35	30	24	11	10	9.5	
280	40	30	25	20	15	9	8	7	
350	35	20	9	4		7	5	4	
420	25	7				5	2		
490	15					2			

(Unit: kg)

RCP4-RA5C, Lead 6

Orientation	Horizontal						Vertical		
Speed $(\mathrm{mm} / \mathrm{s})$	Acceleration (G)								
	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5	
0	40	40	35	30	25	10	10	10	
50	40	40	35	30	25	10	10	10	
100	40	40	35	30	25	10	10	10	
150	40	40	35	25	25	10	10	10	
200	40	40	30	25	20	10	10	10	
250	40	40	27.5	22.5	18	10	9	8	
300	40	35	25	20	14	6	6	6	
350	40	30	14	12	10	5	5	5	
400	30	18	10	6	5	4	3	3	
450	25	8	3			2	2	1	

(Unit: kg)

RCP4-RA6C, Lead 8

Orientation	Horizontal					Vertical		
Speed $(\mathrm{mm} / \mathrm{s})$	Acceleration (G)						0.1	0.3
0.5	0.7	1	0.1	0.3	0.5			
0	60	60	50	45	40	18	18	18
70	60	60	50	45	40	18	18	18
140	60	60	50	45	40	16	16	12
210	60	60	40	31	26	10	10	9
280	60	34	22	15	11	8	7	6
350	60	14	5	1		3	3	2
420	15	1				2		

Orientation	Horizontal					Vertical		
$\begin{aligned} & \text { Speed } \\ & (\mathrm{mm} / \mathrm{s}) \end{aligned}$	Acceleration (G)							
	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	20	20	18	18	14	12	12	12
25	20	20	18	18	14	12	12	12
50	20	20	18	18	14	12	12	12
75	20	20	18	18	14	12	12	12
100	20	18	18	16	12	12	12	12
125	20	18	18	16	12	12	12	12
150	20	18	18	12	10	12	11	10
175	20	18	14	10	6	11	9	8
200	20	18	8			9	7	6
225	20	6				6	5	

(Unit: kg)

RCP4-SA6C, Lead 3

Orientation	Horizontal						Vertical		
Speed $(\mathrm{mm} / \mathrm{s})$	Acceleration (G)						0.3	0.5	
	0.7	1	0.1	0.3	0.5				
0	25	25	25	25	25	12	12	12	
25	25	25	25	25	25	12	12	12	
50	25	25	25	25	25	12	12	12	
75	25	25	25	25	25	12	12	12	
100	25	25	25	25	25	12	12	12	
125	25	25	25	25	25	12	12	12	
150	25	25	25	25	22.5	12	11	10	
175	25	25	25	20	19	11	9	8	
200	25	25	20	18	16	9	7	6	
225	25	18	16	15	12	6	5		

(Unit: kg)
RCP4-SA7C, Lead 4

Orientation	Horizontal					Vertical		
Speed	Acceleration (G)							
$(\mathrm{mm} / \mathrm{s})$	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	45	45	45	40	40	25	25	25
35	45	45	45	40	40	25	25	25
70	45	45	45	40	40	25	25	25
105	45	45	45	40	35	22	20	19
140	45	45	35	30	25	16	14	12
175	45	30	18			11	9	7.5
210	40	8				8		
245	35							

(Unit: kg)

RCP4-RA5C, Lead 3

Orientation	Horizontal					Vertical		
Speed	Acceleration (G)							
(mm / s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	60	60	50	45	40	20	20	20
25	60	60	50	45	40	20	20	20
50	60	60	50	45	40	20	20	20
75	60	60	50	45	40	20	20	20
100	60	60	50	45	40	20	20	20
125	60	60	50	40	30	18	14	10
150	60	50	40	30	25	14	10	6
175	60	40	35	25	20	12	6	5
200	60	35	30	20	14	8	5	4.5
225	40	16	16	10	6	5	5	4
(Unit: kg)								

RCP4-RA6C, Lead 4

(Unit: kg)

Built-in high-output driver designed exclusively for RCP4 generates greater torque at high speed

The newly developed high-output driver (patent pending) achieves significantly improved specifications compared to conventional models (RCP2 series), with the acceleration/ deceleration higher by 1.4 times, maximum speed by 1.5 times, and payload twice as large.
${ }^{(*)}$ The rates of improvement vary depending on the type.

Positioner type and pulse-train type to choose from

You can select a controller of one of two types: the positioner type where position numbers are specified by I/Os (input/output signals) from a PLC, etc., and the pulse-train type where the actuator is operated by sending pulses. (Pulse-train controllers also support positioner operation using I/Os.)

3

Incremental specification and simple absolute specification to choose from

Instead of the simple absolute unit which was offered as an option for the conventional PCON series, two types of controllers are now available including the incremental specification and simple absolute specification. The simple absolute specification comes standard with a battery, so it can be used as a simple absolute unit to facilitate the startup process without having to add a separate device. (Note) All pulse-train Power CON controllers are of the incremental specification.

Incremental specification
Simple absolute specification

${ }^{4}$

Takt time minimization function, maintenance information, calendar function

The takt time minimization function sets an optimal acceleration/deceleration rate according to the load that is available (*). You can also record the number of times the actuator has moved and the distance that it has travelled, for use in maintenance.
${ }^{(*)}$) You need PC software Ver. 8.03.00.00 or later or a CON-PTA (teaching pendant) to use the takt time minimization function.

List of Models

Series name	PCON		
Type name	CA		
Description	Controller with high-output driver for RCP4		
External view			
Control method	Positioner type		Pulse-train type
Positioning method	Incremental specification	Simple absolute specification	Incremental specification
Position points	512 points	512 points	-
Standard price	-	-	-

Model Number

The PCON-CA controller can operate actuators of the RCP2/RCP3/RCP4 series.
Note: The controller settings are fixed for each actuator. If you wish to connect an actuator different from the one initially set, please contact IAI.

ROBO
CMLINDER

PIO I/O Interface

Input Part External Input Specifications

Item	Specification
Input voltage	$24 \mathrm{VDC} \pm 10 \%$
Input current	$5 \mathrm{~mA}, 1$ circuit
ON/OFF voltage	ON voltage: 18 VDC min. OFF voltage: 6 VDC max.

Output Part External Output Specifications

Item	Specification
Load voltage	24 VDC
Maximum load current	$50 \mathrm{~mA}, 1$ circuit
Leak current	2 mA max. per point

NPN specification

PNP specification

Types of PIO Patterns (Control Patterns)

This controller supports seven types of control methods. Select in Parameter No. 25, "PIO pattern selection" the PIO pattern that best suits your purpose of use.

Type	Set value of Parameter No. 25	Mode	Overview
PIO pattern 0	0 (factory setting)	Positioning mode (standard type)	- Number of positioning points: 64 points - Position number command: Binary Coded Decimal (BCD) - Zone signal output*': 1 point - Position zone signal output*2: 1 point
PIO pattern 1	1	Teaching mode (teaching type)	- Number of positioning points: 64 points - Position number command: Binary Coded Decimal (BCD) - Position zone signal output**: 1 point • Jog (inching) operation using PIO signals is supported. - Current position data can be written to the position table using PIO signals.
PIO pattern 2	2	256-point mode (256 positioning points)	- Number of positioning points: 256 points - Position number command: Binary Coded Decimal (BCD) - Position zone signal output*2: 1 point
PIO pattern 3	3	512-point mode (512 positioning points)	- Number of positioning points: 512 points - Position number command: Binary Coded Decimal (BCD) - No zone signal output
PIO pattern 4	4	Solenoid valve mode 1 (7-point type)	- Number of positioning points: 7 points - Position number command: Individual number signal ON - Zone signal output*': 1 point - Position zone signal output**: 1 point
PIO pattern 5	5	Solenoid valve mode 2 (3-point type)	- Number of positioning points: 3 points - Position number command: Individual number signal ON - Completion signal: A signal equivalent to a LS (limit switch) signal can be output. - Zone signal output*': 1 point - Position zone signal output*2: 1 point
PIO pattern 6	6	Pulse-train control mode	- Differential pulse input (200 kpps max.) - Home return function - Zone signal output*': 2 points - No feedback pulse output

[^0]* 2 Position zone signal output: This function is available as part of a position number. A desired zone is set in the position table and
becomes effective only when the corresponding position is specified, but not with commands specifying other positions.

PIO Patterns and Signal Assignments
The table below lists the signal assignments for the I/O flat cable under different PIO patterns. Connect an external device (such as a PLC) according to this table.

	Category	PIO function	Parameter No. 25, "PIO pattern selection"					
			0	1	2	3	4	5
			Positioning mode	Teaching mode	256-point mode	512-point mode	Solenoid valve mode 1	Solenoid valve mode 2
		Number of positioning points	64 points	64 points	256 points	512 points	7 points	3 points
		Home return signal	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times
	Input	Jog signal	\times	\bigcirc	\times	\times	\times	\times
		Teaching signal (writing of current position)	\times	\bigcirc	\times	\times	\times	\times
		Brake release	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		Moving signal	\bigcirc	\bigcirc	\times	\times	\times	\times
	Output	Zone signal	\bigcirc	\times	\times	\times	\bigcirc	\bigcirc
		Position zone signal	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc
1A	24 V				P24			
2A	24 V				P24			
3A	Pulse				-			
4A	input				-			
5A		INO	PC1	PC1	PC1	PC1	STO	STO
6A		IN1	PC2	PC2	PC2	PC2	ST1	ST1(JOG+)
7A		IN2	PC4	PC4	PC4	PC4	ST2	ST2(-)
8A		IN3	PC8	PC8	PC8	PC8	ST3	-
9 A		IN4	PC16	PC16	PC16	PC16	ST4	-
10A		IN5	PC32	PC32	PC32	PC32	ST5	-
11A		IN6	-	MODE	PC64	PC64	ST6	-
12A	Input	IN7	-	JISL	PC128	PC128	-	-
13A	Input	IN8	-	JOG+	-	PC256	-	-
14A		IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL
15A		IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD
16A		IN11	HOME	HOME	HOME	HOME	HOME	-
17A		IN12	*STP	*STP	*STP	*STP	*STP	-
18A		IN13	CSTR	CSTR/PWRT	CSTR	CSTR	-	-
19A		IN14	RES	RES	RES	RES	RES	RES
20A		IN15	SON	SON	SON	SON	SON	SON
1B		OUTO	PM1(ALM1)	PM1(ALM1)	PM1(ALM1)	PM1(ALM1)	PEO	LOS
2B		OUT1	PM2(ALM2)	PM2(ALM2)	PM2(ALM2)	PM2(ALM2)	PE1	LS1(TRQS)
3B		OUT2	PM4(ALM4)	PM4(ALM4)	PM4(ALM4)	PM4(ALM4)	PE2	LS2(-)
4B		OUT3	PM8(ALM8)	PM8(ALM8)	PM8(ALM8)	PM8(ALM8)	PE3	-
5B		OUT4	PM16	PM16	PM16	PM16	PE4	-
6B		OUT5	PM32	PM32	PM32	PM32	PE5	-
7 B		OUT6	MOVE	MOVE	PM64	PM64	PE6	-
8B	Output	OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1
9B	Output	OUT8	PZONE/ZONE2	PZONE/ZONE1	PZONE/ZONE1	PM256	PZONE/ZONE2	PZONE/ZONE2
10B		OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS
11B		OUT10	HEND	HEND	HEND	HEND	HEND	HEND
12B		OUT11	PEND	PEND/WEND	PEND	PEND	PEND	-
13B		OUT12	SV	SV	SV	SV	SV	SV
14B		OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS
15B		OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM
16B		OUT15	LOAD/TRQS *ALML	*ALML	LOAD/TRQS *ALML	LOAD/TRQS *ALML	LOAD/TRQS *ALML	*ALML
17B	Pulse				-			
18B	input				-			
19B	OV				N			
20B	OV				N			

Note: In the table above, asterisk * symbol accompanying each code indicates a negative logic signal. PM1 to PM8 are alarm binary code output signals that are used when an alarm generates.
Reference) Negative logic signal
Signals denoted by * are negative logic signals. Negative logic input signals are processed when turned OFF. Negative logic output signals normally remain ON while the power is supplied, and turn OFF when the signal is output.
Note: The names of the signals above inside () are functions before the unit returns home.

ROBC
CMLIMDER

Pulse-train Control Circuit

Host Unit = Differential Type

Host Unit $=$ Open Collector Type
The AK-04 (optional) is needed to input pulses.

Caution: Use the same power supply for open collector input/output to/from the host and for the AK-04.

Command Pulse Input Patterns

The command pulses indicate the amount of motor rotation, while the sign indicates the rotating direction.

Command phases A and B having a 90° phase difference (multiplier is 4) indicate the amount of rotation and the rotating direction.

I/O Signals in Pulse-train Control Mode

The table below lists the signal assignments for the flat cable in the pulse-train control mode.
Connect an external device (such as PLC) according to this table.

Pin number	Category	I/O number	Signal abbreviation	Signal name	Parameter No. 25, "PIO pattern 6"
1A	24 V		P24	Power supply	I/O power supply +24V
2A	24 V		P24	Power supply	I/O power supply +24V
3A	Pulse input		PP	Differential pulse-train input (+)	Differential pulses are input from the host. Up to 200 kpps can be input.
4A			/PP	Differential pulse-train input (-)	
5A	Input	IN0	SON	Servo ON	The servo is ON while this signal is ON, and OFF while the signal is OFF.
6A		IN1	RES	Reset	Present alarms are reset when this signal is turned ON.
7A		IN2	HOME	Home return	Home return operation is performed when this signal is turned ON.
8A		IN3	TL	Torque limit selection	When this signal is turned ON, the motor torque is limited to the value set by the parameter.
9 A		IN4	CSTP	Forced stop	The actuator is forcibly stopped when this signal has remained ON for 16 ms or more. The actuator decelerates to a stop at the torque set in the controller and the servo turns OFF.
10A		IN5	DCLR	Deviation counter clear	This signal clears the deviation counter.
11A		IN6	BKRL	Forced brake release	The brake is forcibly released.
12A		IN7	RMOD	Operation mode switching	The operation mode can be switched when the MODE switch on the controller is set to AUTO. (AUTO when this signal is OFF, and to MANU when the signal is ON.)
13A		IN8	NC	-	Not used
14A		IN9	NC	-	Not used
15A		IN10	NC	-	Not used
16A		IN11	NC	-	Not used
17A		IN12	NC	-	Not used
18A		IN13	NC	-	Not used
19A		IN14	NC	-	Not used
20A		IN15	NC	-	Not used
1B	Output	OUTO	PWR	System ready	This signal turns ON when the controller becomes ready after the main power has been turned on.
2B		OUT1	SV	Servo ON status	This signal turns ON when the servo is ON.
3B		OUT2	INP	Positioning complete	This signal turns ON when the amount of remaining travel pulses in the deviation counter falls within the in-position band.
4B		OUT3	HEND	Home return complete	This signal turns ON upon completion of home return.
5B		OUT4	TLR	Torque limited	This signal turns ON upon reaching the torque limit while the torque is limited.
6B		OUT5	*ALM	Controller alarm status	This signal turns ON when the controller is normal, and turns OFF when an alarm generates.
7B		OUT6	*EMGS	Emergency stop status	This signal turns ON when the emergency stop of the controller is cancelled, and turns OFF when an emergency stop is actuated.
8B		OUT7	RMDS	Operation mode status	The operation mode status is output. This signal turns ON when the controller is in the manual mode.
9B		OUT8	ALM1	Alarm code output signal	An alarm code is output when an alarm generates. For details, refer to the operation manual.
10B		OUT9	ALM2		
11B		OUT10	ALM4		
12B		OUT11	ALM8		
13B		OUT12	*ALML	Minor failure alarm	This signal is output when a message-level alarm generates.
14B		OUT13	NC	-	Not used
15B		OUT14	ZONE1	Zone signal 1	This signal turns ON when the current position of the actuator falls within the parameter-set range.
16B		OUT15	ZONE2	Zone signal 2	
17B	Pulse input		NP	Differential pulse-train input (+)	Differential pulses are input from the host. Up to 200 kpps can be input.
18B		,	/NP	Differential pulse-train input (-)	
19B	OV	-	N	Power supply	I/O power supply 0 V
20B	OV	,	N	Power supply	I/O power supply 0 V

Note) * indicates a negative logic signal. Negative logic signals are normally ON while the power is supplied, and turn OFF when the signal is output.
(Note) The number of encoder pulses is 800 with all RCP4 series models. For details, refer to the operation manual.

ROBO
CYLINDER

External Dimensions

Incremental specification (standard)

Simple absolute specification

Specification Table

(Note 1) Rush current will flow for approx. 1 to 2 msec after the power is turned on (at $40^{\circ} \mathrm{C}$). Take note that the rush current value varies depending on the impedance of the power supply line.
(Note 2) If the host implements open collector output, use the separately sold AK-04 (optional) to convert the signals to differential output signals.

Option

- Touch-panel Teaching Pendant for Position Controller

Developed based on the design of the popular CON-PT series adopting an easy-to-use interactive touch-panel menu screen, this new data input device supports various functions offered by the PCON-CA controller.

1. Color screen for greater ease of view
2. Supporting the takt time minimization function and maintenance information checking/ input functions of the PCON-CA
3. Position, parameters and other data can be saved in a SD card
4. Built-in clock function records the date \& time of each event; data can then be saved in a SD card.

Model Numbers/Specifications

Item	Description		
Model number	CON-PTA-C-ENG	CON-PDA-C-ENG	CON-PGA-C-S-ENG
Type	Standard type	Enable switch type	Safety-category compliant type
Connectable controllers	ACON/PCON/SCON/RACON/RPCON ASEP/PSEP AMEC/PMEC ERC2 (*1)/ERC3		
3-position enable switch	\times	\bigcirc	\bigcirc
Functions	- Position data input/editing - Moving function (moving to set positions, jogging/inching) - Parameter editing - Monitoring (current position, current speed, I/O signals, alarm code, alarm generation time) - Saving/reading data to/from external SD cards (position data parameters, alarm list) - Takt time minimization function - Maintenance information (total number of movements, total distance travelled, etc.)		
Display	65536 colors (16-bit colors), white LED backlight		
Ambient operating temperature/humidity	0 to $50^{\circ} \mathrm{C}, 20$ to $80 \% \mathrm{RH}$ (non-condensing)		
Environmental resistance	IP40 or equivalent		
Mass	Approx. 570g	Approx. 600g	
Cable length	5 m		
Accessories	Stylus	Stylus	Stylus, TP adapter (Model number: RCB-LB-TG) Dummy plug (Model number: DP-4) Controller cable (Model number: CB-CON-LBOO5)

*1 Among the ERC2 series, only the actuators bearing 4904 or greater number stamped on the serial number label can be connected.

Name of Fach Part

■ Name of Each Part/External Dimensions

Option

- Strap (Model number: STR-1)

Option

- PC Software (Windows Only)

This startup support software provides functions to input positions, perform test operations and monitor data, among others. It also supports the takt time minimization function, calendar function, maintenance information, etc., so, for example, you can set optimal operating conditions for your actuator and carry out preventive maintenance.

* The above functions are supported by software versions of 8.03.00.00 and later.

Features

Startup support software with functions to program and input positions, perform test operations and monitor data, among others. It enhances the functions needed for debugging to help shorten the startup time.

Example of position input

Service part

Simple absolute battery

- Model number AB-7

Integrated Motor/Encoder Cable \& Integrated Motor/Encoder Robot Cable for RCP4
Model
CB-CA-MPA
$\square \square \square /$ CB-CA-MPA \square -RB

* $\square \square \square$ indicates the cable length (L). A desired length can be specified up to 20 m . Example: $080=8 \mathrm{~m}$

* Robot cables are cables resistant to flexing forces. If the cable must be guided in a cable track, use a robot cable.

	Controller end PADP-24V-1-S (JST)	
Pin No.	Signal name	Color
1	VA/ ${ }_{\text {VM }}$	Blue (Black)
2		Orange (White)
5	OAPW	Green (Brown)
3	QB/-	Brown (Green)
4	VMM/-	Gray (Yellow)
6	0,B/-	Red (Red)
7	LS+/BK+	Black (Orange)
- 8	LS-/BK-	Yellow (Gray)
(11	-/A+	Blue (White)
$\rightarrow-12$	- $/$ A-	Orange (Yellow)
- 13	A+/B+	Green(Red)
14	A-/B-	Brown (Green)
15	B+/Z+	Gray (Black)
	B-IZ-	Red (Brown)
(1) 9	BK+/LS+	Blue (Black)
10	BK-ILS-	Orange (Brown)
20	LS_GND	Green (Green)
-18	VPS	Brown(Red)
17	VCC	Gray (White)
19	GND	Red (Yellow)
21		
$\frac{22}{23}$	-	-
24	FG	Black(-)

Integrated Motor/Encoder Cable for RCP2

Integrated Motor/Encoder Cable for RCP3

Model

number CB-APSEP_MPA $\square \square \square{ }^{*}$ *The default specification of this cable is robot cable. \begin{tabular}{l}

* $\square \square \square$ indicates the cable length (L).

A desired length can be specified up to 20 m.
Example: $080=8 \mathrm{~m}$

\hline
\end{tabular}

Model
number
CB-PAC-P\|O
\square
:---
can be specified up to 10 m . Example: $080=8 \mathrm{~m}$

IAI America, Inc.
Headquarters: 2690 W. 237th Street Torrance, CA 90505 (800) 736-1712
Chicago Office: 1261 Hamilton Parkway Itasca, IL 60143 (800) 944-0333
Atlanta Office: 1220 Kennestone Circle, Suite 108, Marietta, GA 30066 (888) 354-9470

IAI Industrieroboter GmbH
Ober der Roth 4, D-65824 Schwalbach am Taunus, Germany www.intelligentactuator.com

The information contained in this product brochure may change without prior notice due to product improvements.

[^0]: * 1 Zone signal output: A desired zone is set by Parameter Nos. 1 and 2 or 23 and 24, and the set zone always remains effective once home return has completed.

