


# HOLDING DEVICES AND BRAKES FOR OSP-P





# **Holding Devices and Brakes**

# **Holding Device**

for pneumatic linear drive Series OSP-P Piston diameters 25 - 80 mm. See page 35

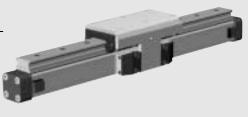


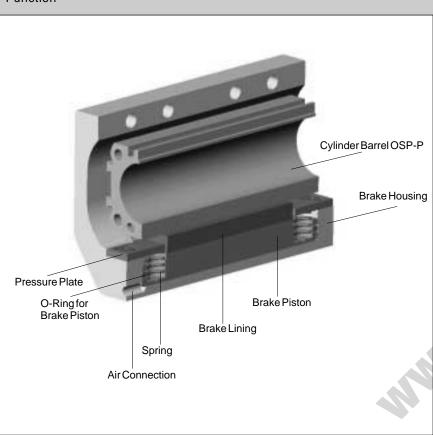

### **Versions:**

- ACTIVE Brake
- Plain bearing guide with integrated Holding Device
- Aluminum roller guide with integrated Holding Device
- Plain bearing guide with PASSIVE Brake
- Aluminum roller guide with PASSIVE Brake

Slideline with Brake Plain bearing guide Slideline - SL with integrated Active Brake Piston diameters 25 - 50 mm. See page 21




Proline with Brake Aluminum roller guide Proline - PL with integrated Active Brake Piston diameters 25 - 50 mm. See page 31




Multibrake with Slideline Multi-Brake – Passive Brake with plainbearing guide Slideline - SL Piston diameter 25 - 80 mm. See page 39



Multibrake with Proline Multi-Brake – Passive Brake with aluminum roller guide Proline - PL Piston diameters 25 - 50 mm. See page 43





# Position Holding Device

OSP

-ORTMAN

-SYSTEM

-PLUS

Series AB 25 to 80 for linear drive
• Series OSP-P

### Features:

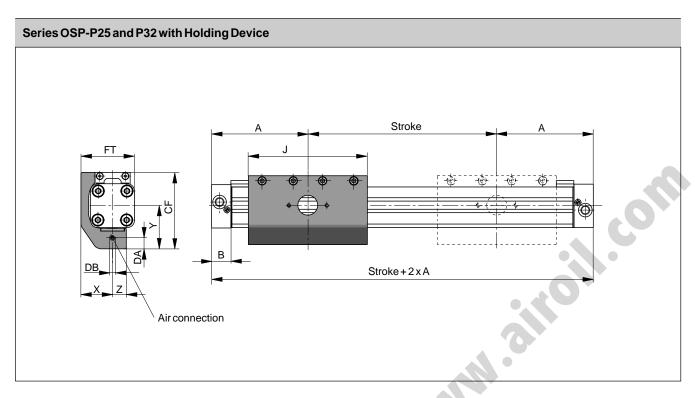
- · Actuated by pressurization
- · Released by spring actuation
- · Completely stainless version
- Holds position, even under changing load conditions

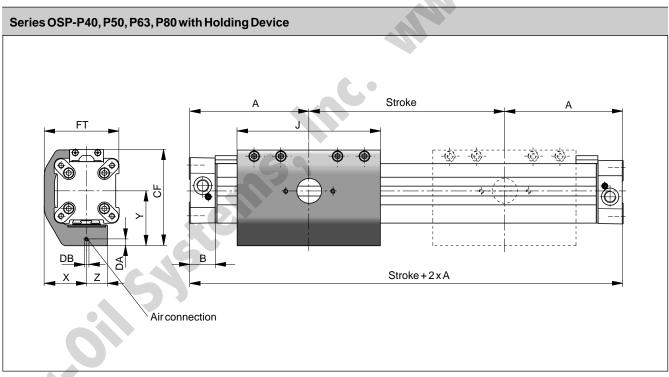
For further technical data, please refer to the data sheets for linear drives OSP-P (page 13)

# **Forces and Weights**

| Series | For          | Max.                       | Brake pad | Mass [kg]                      |                                            |        |  |  |  |  |  |  |
|--------|--------------|----------------------------|-----------|--------------------------------|--------------------------------------------|--------|--|--|--|--|--|--|
|        | linear drive | braking<br>force<br>[N] (1 | way [mm]  | Linear drive<br>0 mm<br>stroke | with brake<br>increase per<br>100mm stroke | brake* |  |  |  |  |  |  |
| AB 25  | OSP-P25      | 350                        | 2.5       | 1.0                            | 0.197                                      | 0.35   |  |  |  |  |  |  |
| AB 32  | OSP-P32      | 590                        | 2.5       | 2.02                           | 0.354                                      | 0.58   |  |  |  |  |  |  |
| AB 40  | OSP-P40      | 900                        | 2.5       | 2.83                           | 0.415                                      | 0.88   |  |  |  |  |  |  |
| AB 50  | OSP-P50      | 1400                       | 2.5       | 5.03                           | 0.566                                      | 1.50   |  |  |  |  |  |  |
| AB 63  | OSP-P63      | 2170                       | 3.0       | 9.45                           | 0.925                                      | 3.04   |  |  |  |  |  |  |
| AB 80  | OSP-P80      | 4000                       | 3.0       | 18.28                          | 1.262                                      | 5.82   |  |  |  |  |  |  |

(1 - at 6 bar both chambers pressurized with 6 bar Braking surface dry - oil on the braking surface will reduce the braking force


# \* Please Note:


The mass of the brake has to be added to the total moving mass when using the cushioning diagram.



The right to introduce technical modifications is reserved

For additional information on loads, forces and moment, please refer to page 14



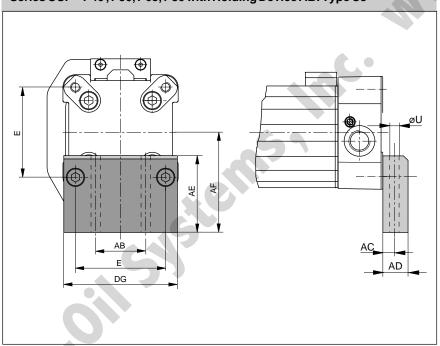


| Dimension Ta | able (mm) |      |       |      |      |    |       |     |      |      |
|--------------|-----------|------|-------|------|------|----|-------|-----|------|------|
| Series       | Α         | В    | J     | Х    | Y    | Z  | CF    | DA  | DB   | FT   |
| AB 25        | 100       | 22   | 117   | 29.5 | 43   | 13 | 74    | 4   | M5   | 50   |
| AB 32        | 125       | 25.5 | 151.4 | 36   | 50   | 15 | 88    | 4   | M5   | 62   |
| AB 40        | 150       | 28   | 151.4 | 45   | 58   | 22 | 102   | 7   | M5   | 79.5 |
| AB 50        | 175       | 33   | 200   | 54   | 69.5 | 23 | 118.5 | 7.5 | M5   | 97.5 |
| AB 63        | 215       | 38   | 256   | 67   | 88   | 28 | 151   | 9   | G1/8 | 120  |
| AB 80        | 260       | 47   | 348   | 83   | 105  | 32 | 185   | 10  | G1/8 | 149  |

# Series OSP – P25 and P32 with Holding Device: Type A3

# **End Cap Mountings**

On the end-face of each cylinder end cap there are four threaded holes for mounting the cylinder. The hole layout is square, so that the mounting can be fitted to the bottom, top or either side.


Material: Series OSP-P25, P32:

Galvanized steel

The mountings are supplied in pairs.



# Series OSP-P40, P50, P63, P80 with Holding Device AB: Type C3



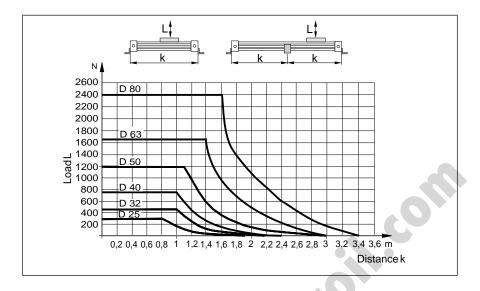
Material: Series OSP-P40,P50,

P63, P80:

Anodized aluminum

The mountings are supplied in pairs.

Stainless-steel version on request.




| Dimensi | on Table | e(mm) |    |      |    |    |     |     |     |                 |                  |
|---------|----------|-------|----|------|----|----|-----|-----|-----|-----------------|------------------|
| Series  | E        | øU    | AB | AC   | AD | AE | AF  | CL  | DG  | Orde<br>Type A3 | r No.<br>Type C3 |
| AB 25   | 27       | 5.8   | 27 | 16   | 22 | 45 | 49  | 2.5 | 39  | OSP-2060        | -                |
| AB 32   | 36       | 6.6   | 36 | 18   | 26 | 42 | 52  | 3   | 50  | OSP-3060        | -                |
| AB 40   | 54       | 9     | 30 | 12.5 | 24 | 46 | 60  | -   | 68  | -               | OSP-20339        |
| AB 50   | 70       | 9     | 40 | 12.5 | 24 | 54 | 72  | -   | 86  | -               | OSP-20350        |
| AB 63   | 78       | 11    | 48 | 15   | 30 | 76 | 93  | _   | 104 | -               | OSP-20821        |
| AB80    | 96       | 14    | 60 | 17.5 | 35 | 88 | 110 | _   | 130 | -               | OSP-20822        |

# **Mid-Section Support**

Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading. Deflection of 0.5mm max. between supports is permissible.

The mid-section supports are attached to the dovetail rails and can take axial loads.



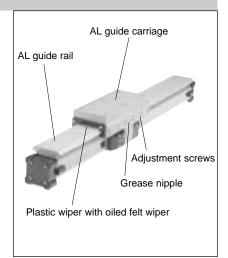
# **Mid-Section Supports**

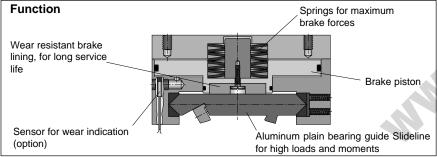
Note to Type E3:

Mid-section supports can only be mounted opposite of the brake housing.

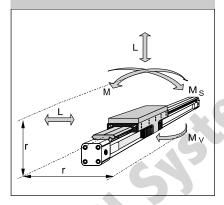
Stainless-steel version available on request.




# Series OSP-P25 to P80 with Holding Device: Type E3 (Mounting from above / below with through-bolt)


| Dimension Table (m | ım) | C   |      |       |    |    |      |    |    |      |    |                     |
|--------------------|-----|-----|------|-------|----|----|------|----|----|------|----|---------------------|
| Series             | U   | AF  | DE   | DH    | DK | DM | DN   | DO | DP | DQ   | DR | Order No.<br>Type 3 |
| AB 25              | 5,5 | 49  | 16   | 65    | 26 | 40 | 47,5 | 36 | 50 | 34,5 | 35 | OSP-20353           |
| AB32               | 5,5 | 52  | 16   | 68    | 27 | 46 | 54,5 | 36 | 50 | 40,5 | 32 | OSP-20356           |
| AB 40              | 7   | 60  | 23   | 83    | 34 | 53 | 60   | 45 | 60 | 45   | 32 | OSP-20359           |
| AB 50              | 7   | 72  | 23   | 95    | 34 | 59 | 67   | 45 | 60 | 52   | 31 | OSP-20362           |
| AB 63              | 9   | 93  | 34   | 127   | 44 | 73 | 83   | 45 | 65 | 63   | 48 | OSP-20453           |
| AB 80              | 11  | 110 | 39,5 | 149,5 | 63 | 97 | 112  | 55 | 80 | 81   | 53 | OSP-20819           |

# Accessories for linear drives with Holding Device – please order separately


| Description                                                 | For details information, see page |
|-------------------------------------------------------------|-----------------------------------|
| Clevis mounting                                             | 51                                |
| Adaptor profile                                             | 58                                |
| T-Nut profile                                               | 59                                |
| Sensors (can only be mounted opposite of the brake housing) | 62                                |
| Displacement measuring system SFI                           | 66                                |







# Loads, Forces and Moments



## **Technical Data:**

The table shows the maximum values for light, shock-free operation, which must not be exceeded even in dynamic operation.

Load and moment data are based on speeds v < 0.2 m/s.

Operating pressure 4,5 - 8 bar A pressure of 4,5 bar is required to release the brake.

For further technical information, please refer to the data sheets for linear drives OSP-P (page 13)

# Multi-Brake

with Plain Bearing Guide Slideline SL

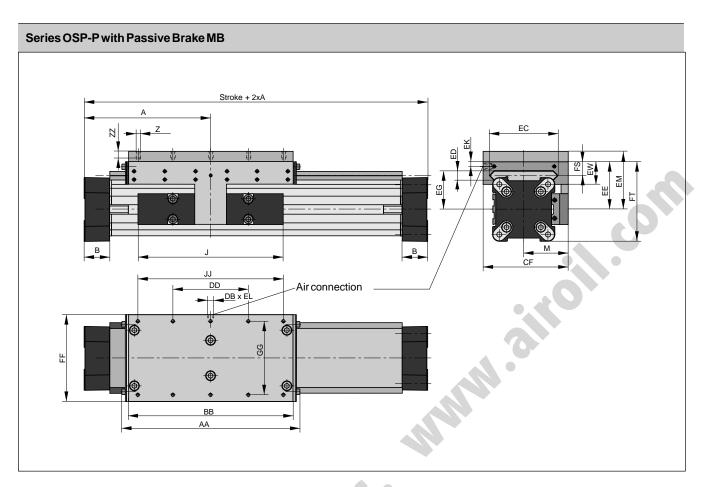


Series MB-SL 25 to 80 for Linear Drive
• Series OSP-P

# Features:

- Brake operated by spring actuation
- Brake release by pressurization
- Corrosion resistant as standard
- Optional sensor to indicate brake lining wear
- Anodized aluminum rail, with prism shaped slide elements
- Adjustable plastic slide elements
- Composite sealing system with plastic and felt wiper elements to remove dirt and lubricate the slideway
- Replenishable guide lubrication by integrated grease nipples
- Blocking function in case of pressure loss
- Intermediate stops possible

# **Function:**


The Multi-Brake is a passive device. When the air pressure is removed the brake is actuated and movement of the cylinder is blocked. The brake is released by pressurization.

The high friction, wear resistant brake linings allow the Multi-Brake to be used as a dynamic brake to stop cylinder movement in the shortest possible time. The powerful springs also allow the Multi-Brake to be used effectively in positioning applications.

| Series   | For linear drive | m<br>M | Max.<br>nomen<br>[Nm]<br> Ms |     | Max.<br>loads<br>[N]<br>L | Max.<br>brake force<br>[N] 1) |       | near drive<br>nide [kg]<br>increase pro<br>100 mm str. | Mass*<br>guide<br>carriage<br>[kg] |
|----------|------------------|--------|------------------------------|-----|---------------------------|-------------------------------|-------|--------------------------------------------------------|------------------------------------|
| MB-SL 25 | OSP-P25          | 34     | 14                           | 34  | 675                       | 470                           | 2.04  | 0.39                                                   | 1.10                               |
| MB-SL32  | OSP-P32          | 60     | 29                           | 60  | 925                       | 790                           | 3.82  | 0.65                                                   | 1.79                               |
| MB-SL40  | OSP-P40          | 110    | 50                           | 110 | 1500                      | 1200                          | 5.16  | 0.78                                                   | 2.34                               |
| MB-SL50  | OSP-P50          | 180    | 77                           | 180 | 2000                      | 1870                          | 8.29  | 0.97                                                   | 3.63                               |
| MB-SL63  | OSP-P63          | 260    | 120                          | 260 | 2500                      | 2900                          | 13.31 | 1.47                                                   | 4.97                               |
| MB-SL80  | OSP-P80          | 260    | 120                          | 260 | 2500                      | 2900                          | 17.36 | 1.81                                                   | 4.97                               |

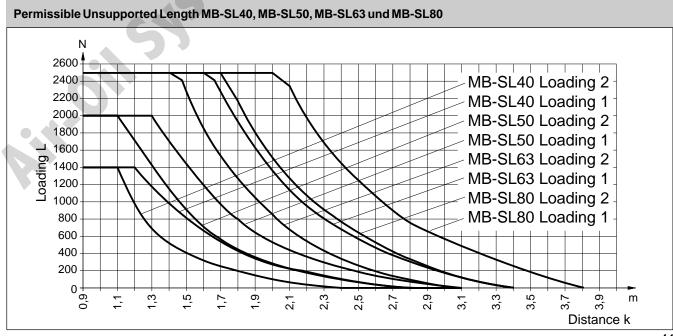
- 1) Braking surface dry oil on the braking surface will reduce the braking force
- \* Please note:

in the cushioning diagram, the mass of the guide carriage has to be added to the total moving mass.



| Dimensi | on T | able ( | mm) | )    |    |     |     |      |     |      |     |    |    |    |     |    |     |    |     |       |      |     |     |   |
|---------|------|--------|-----|------|----|-----|-----|------|-----|------|-----|----|----|----|-----|----|-----|----|-----|-------|------|-----|-----|---|
| Series  | Α    | В      | J   | М    | Z  | AA  | ВВ  | DB   | DD  | CF   | EC  | ED | EE | EG | ΕK  | EL | EM  | EW | FF  | FT    | FS   | GG  | JJ  | Z |
| MB-SL25 | 100  | 22     | 117 | 40,5 | M6 | 162 | 142 | M5   | 60  | 72.5 | 47  | 12 | 53 | 39 | 9   | 5  | 73  | 30 | 64  | 73.5  | 20   | 50  | 120 | 1 |
| MB-SL32 | 125  | 25.5   | 152 | 49   | M6 | 205 | 185 | G1/8 | 80  | 91   | 67  | 14 | 62 | 48 | 7   | 10 | 82  | 33 | 84  | 88    | 21   | 64  | 160 | 1 |
| MB-SL40 | 150  | 28     | 152 | 55   | M6 | 240 | 220 | G1/8 | 100 | 102  | 77  | 14 | 64 | 50 | 6.5 | 10 | 84  | 34 | 94  | 98.5  | 21.5 | 78  | 200 | 1 |
| MB-SL50 | 175  | 33     | 200 | 62   | M6 | 284 | 264 | G1/8 | 120 | 117  | 94  | 14 | 75 | 56 | 10  | 12 | 95  | 39 | 110 | 118.5 | 26   | 90  | 240 | 1 |
| MB-SL63 | 215  | 38     | 256 | 79   | M8 | 312 | 292 | G1/8 | 130 | 152  | 116 | 18 | 86 | 66 | 11  | 12 | 106 | 46 | 152 | 139   | 29   | 120 | 260 | 1 |
| MB-SL80 | 260  | 47     | 348 | 96   | M8 | 312 | 292 | G1/8 | 130 | 169  | 116 | 18 | 99 | 79 | 11  | 12 | 119 | 46 | 152 | 165   | 29   | 120 | 260 | ١ |
|         |      |        |     |      | •  |     |     |      |     |      |     |    |    |    |     |    |     |    |     |       |      |     |     |   |


# Loading 1 Loading 2


# **Mid-Section Support**

Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading. A distinction must be drawn between loading 1 and loading 2. Deflection of 0.5 mm max. between supports is permissible.

### Note:

For speeds v > 0,5 m/s the distance between supports should not exceed 1 m.





# Control of a cylinder with 3/2 way valves. Basic position – exhausted Control of a cylinder with 3/2 way valves. Basic position – pressurized

# **Control Examples**

Under normal operating circumstances the pressure switch is closed and the air flows through the 3/2 way solenoid valves from port 1 to 2, thus lifting the brake from the rail (operating condition). The brake is pressurized by means of a 3/2 way valve in combination with a pressure switch. When there is a pressure loss, the brake is actuated by the pressure switch.

When the air pressure is restored to both cylinder chambers, the brake is lifted and the linear drive can be moved again.

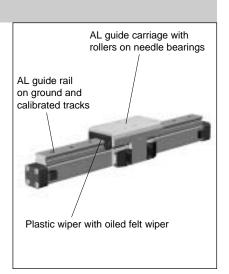
The speed regulating valves D1 and D2 control the speed of the linear drive, and have no influence on the brake. The two non-return valves give the system a higher stability.

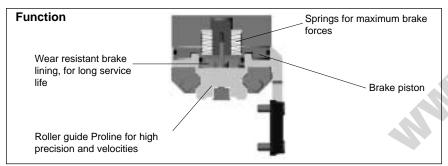
The pressure regulating valve is used to compensate for the downward force in this vertical application.

# Please note:

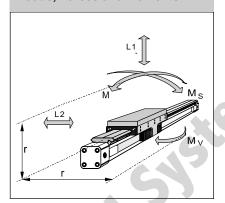
Before the brake is lifted, make sure that both air chambers of the linear drive are pressurized. Small diameter tubing, fittings and valves with a nominal diameter, and tubing that is too long all change the reaction time of the brake!

# \*Tip:


The pressure switch actuates the brake when the pressure drops below the set value.


For accessories, such as tubing and fittings, please refer to our separate catalog.

# **Required Components**


| Way Valves                       |
|----------------------------------|
| Port size                        |
| M5                               |
| G1/8                             |
| G1/4                             |
| G1/2                             |
| Pressure Regulating Valve        |
| G1/8 - G3/8                      |
| P/E-Converter                    |
| Non-Return Valves                |
| G1/8, G1/4                       |
| G3/8                             |
| Screw-in Speed Regulating Valves |
| M5 - G1/4                        |
|                                  |







# **Loads, Forces and Moments**



# **Technical Data**

The table shows the maximal permissible loads. If multiple moments and forces act upon the cylinder simultaneously, the following equation applies:

$$\frac{M}{M_{max}} + \frac{M_s}{M_{s,max}} + \frac{M_v}{M_{v,max}} + \frac{L_1}{L_{t,max}} + \frac{L_2}{L_{2max}} < 1$$

The sum of the loads should not exceed >1

The table shows the maximum permissible values for light, shock-free operation, which must not be exceeded even under dynamic conditions.

# Multi-Brake

with Aluminum Roller Guide Proline PL

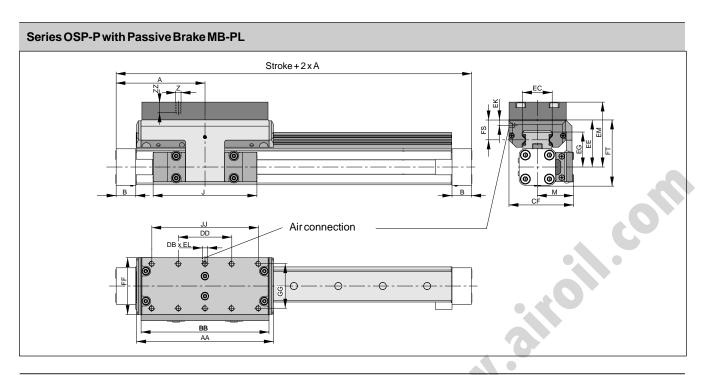


Series MB-PL 25 to 50 for Linear Drive • Series OSP-P

Features:

- Brake operated by spring actuation
- Brake release by pressurization
- · Corrosion resistant as standard
- Optional sensor to indicate brake lining wear
- Composite sealing system with plastic and felt wiper elements to remove dirt and lubricate the slideway
- Blocking function in case of pressure loss
- Intermediate stops possible

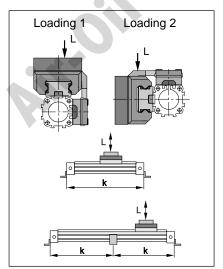
### Function:


The Multi-Brake is a passive device. When the air pressure is removed the brake is actuated and movement of the cylinder is blocked. The brake is released by pressurization.

The high friction, wear resistant brake linings allow the Multi-Brake to be used as a dynamic brake to stop cylinder movement in the shortest possible time. The powerful springs also allow the Multi-Brake to be used effectively in positioning applications.

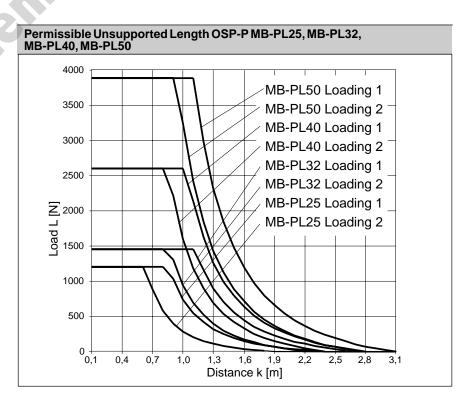
Operating Pressure 4,5 - 8 bar. A pressure of min. 4,5 bar release the brake.

| Series   | For linear drive | Max.<br>moments<br>[Nm] |     |     | Max.<br>loads<br>[N] | Max.<br>brake force<br>[N] 1) | Mass of lir<br>with gu<br>with | ide [kg]<br>  increase pro | Mass*<br>guide<br>carriage |
|----------|------------------|-------------------------|-----|-----|----------------------|-------------------------------|--------------------------------|----------------------------|----------------------------|
|          |                  | M                       | Ms  | Μv  | L1, L2               |                               | 0 mm stroke                    | 100 mm stroke              | [kg]                       |
| MB-PL 25 | OSP-P25          | 55                      | 23  | 55  | 1210                 | 315                           | 2.14                           | 0.40                       | 1.24                       |
| MB-PL32  | OSP-P32          | 91                      | 36  | 91  | 1460                 | 490                           | 4.08                           | 0.62                       | 2.02                       |
| MB-PL40  | OSP-P40          | 198                     | 72  | 198 | 2600                 | 715                           | 5.46                           | 0.70                       | 2.82                       |
| MB-PL50  | OSP-P50          | 313                     | 139 | 313 | 3890                 | 1100                          | 8.60                           | 0.95                       | 4.07                       |


- 1) Braking surface dry oil on the braking surface will reduce the braking force
- \* Please note:
  - In the cushioning diagram, the mass of the guide carriage has to be added to the total moving mass.



| Dimen   | sion | Table | e(mm | ) Seri | ies O | SP-P | MB-P | L25, I | МВ-Р | L32, I | ИВ-Р | L40, N | /IB-P | L50 |    |    |     |      |       |    |     |    |
|---------|------|-------|------|--------|-------|------|------|--------|------|--------|------|--------|-------|-----|----|----|-----|------|-------|----|-----|----|
| Series  | Α    | В     | J    | М      | Z     | AA   | ВВ   | DB     | DD   | CF     | EC   | EE     | EG    | EK  | EL | EM | FF  | FS   | FT    | GG | JJ  | ZZ |
| MB-PL25 | 100  | 22    | 117  | 40.5   | M6    | 154  | 144  | M5     | 60   | 72.5   | 32.5 | 53     | 39    | 9   | 5  | 73 | 64  | 23   | 73.5  | 50 | 120 | 12 |
| MB-PL32 | 125  | 25.5  | 152  | 49     | M6    | 197  | 187  | G1/8   | 80   | 91     | 42   | 62     | 48    | 7   | 10 | 82 | 84  | 25   | 88    | 64 | 160 | 12 |
| MB-PL40 | 150  | 28    | 152  | 55     | M6    | 232  | 222  | G1/8   | 100  | 102    | 47   | 64     | 50.5  | 6.5 | 10 | 84 | 94  | 23.5 | 98.5  | 78 | 200 | 12 |
| MB-PL50 | 175  | 33    | 200  | 62     | M6    | 276  | 266  | G1/8   | 120  | 117    | 63   | 75     | 57    | 10  | 12 | 95 | 110 | 29   | 118.5 | 90 | 240 | 16 |


# **Mid-Section Support**

(for versions see page 56)
Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading. A distinction must be drawn between loading 1 and loading 2. Deflection of 0.5 mm max. between supports is permissible.



# Note:

For speeds v > 0,5 m/s the distance between supports should not exceed 1 m.



# Control of a cylinder with 3/2 way valves. Basic position – exhausted Control of a cylinder with 3/2 way valves. Basic position – pressurized

# **Control Examples**

Under normal operating circumstances the pressure switch is closed and the air flows through the 3/2 way solenoid valves from port 1 to 2, thus lifting the brake from the rail (operating condition). The brake is pressurized by means of a 3/2 way valve in combination with a pressure switch. When there is a pressure loss, the brake is actuated by the pressure switch.

When the air pressure is restored to both cylinder chambers, the brake is lifted and the linear drive can be moved again.

The speed regulating valves D1 and D2 control the speed of the linear drive, and have no influence on the brake. The two non-return valves give the system a higher stability.

The pressure regulating valve is used to compensate for the downward force in this vertical application.

### Please note:

Before the brake is lifted, make sure that both air chambers of the linear drive are pressurized. Small diameter tubing, fittings and valves with a nominal diameter, and tubing that is too long all change the reaction time of the brake!

# \*Tip:

The pressure switch actuates the brake when the pressure drops below the set value.

### **Required Components**

| Way Valves                       |
|----------------------------------|
| Port size                        |
| M5                               |
| G1/8                             |
| G1/4                             |
| G1/2                             |
| Pressure Regulating Valve        |
| G1/8 - G3/8                      |
| P/E-Converter                    |
| Non-Return Valves                |
| G1/8, G1/4                       |
| G3/8                             |
| Screw-in Speed Regulating Valves |
| M5 - G1/4                        |

Air. Oil Systems, Inc.